The LPM Effect in Sequential Bremsstrahlung

Peter Arnold

University of Virginia

- What's the LPM effect?
- How does one compute it?
- What's new since 1950s (QED LPM) and 1990s (QCD LPM)

At high energy, energy loss is dominated by nearly-collinear bremsstrahlung and pair production.

[QCD version: high-energy partons traversing a quark-gluon plasma.]

<u>Naively</u>

brem rate ~ $n\sigma v$ ~ (density of scatterers) ×

 $\Gamma_{
m brem} \propto E^0$ (up to logs)

Complication: The Landau-Pomeranchuk-Migdal (LPM) Effect

At very high energy,

probabilities of brem from successive scatterings no longer independent;

brem from several successive (small angle) collisions not very different from brem from one collision.

formation length $\propto \sqrt{E}$

Result: a reduction of the naive brem rate.

 $\Gamma_{
m brem} \propto E^{-1/2}$

The LPM Effect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase \rightarrow coherent.]

Now: Just Lorentz boost above picture by a lot!

The LPM Effect (QED)

Note: (1) bigger E requires bigger boost \rightarrow more time dilation \rightarrow longer formation length

(2) big boost \rightarrow this process is **very collinear**.

In Feynman diagrams, LPM manifests as having to compute interference contributions

Long standing problem concerning LPM effect:

Are splittings independent?

Can I just put LPM result for Γ_{brem} etc. into a Monte Carlo to get

Crudely (sweeping some interesting physics under the rug),

Chance of brem $\sim \alpha$ per formation time

So two consecutive splittings will typically look like

Scale for QGP applications: $\alpha_{\rm S}(Q_{\perp})$ where $Q_{\perp} \sim (\hat{q}E)^{1/4}$ $[\hat{q} \sim {\rm GeV}^3]$

Moral: It's interesting to figure out how to calculate correction due to overlap.

Formalism for LPM: single brem

Shorthand henceforth: Draw

But will be even more convenient to draw as

Can (formally) interpret this as 3 particles moving forward in time [Zakharov 1990's]:

2 particles from the amplitude (evolving with e^{-iHt})

1 particle from the conjugate amplitude (evolving with e^{+iHt})

Will show that evolution in

can be described by

3-particle non-relativistic Quantum Mechanics in 2 dimensions

$$\mathcal{H}_{ ext{eff}} = rac{p_{\perp 1}^2}{2m_1} + rac{p_{\perp 2}^2}{2m_2} + rac{p_{\perp 3}^2}{2m_3} + V(b_1, b_2, b_3)$$

with weird properties:

$$\bullet \quad m_1 + m_2 + m_3 = 0$$

•
$$V \propto -i$$
 (i.e. \mathcal{H} is non-Hermitian)

 \Rightarrow interference vanishes as $\Delta t \rightarrow \infty$, as it must!

Kinetic terms:

Energy of a high-
$$p_z$$
 particle: $\epsilon_p = \sqrt{p_z^2 + p_\perp^2} \simeq p_z + rac{p_\perp^2}{2p_z}$

$$egin{align} \mathcal{H}_{
m kin} = -\epsilon_{p_1} + \epsilon_{p_2} + \epsilon_{p_3} \simeq -rac{p_{\perp 1}^2}{2p_{z1}} + rac{p_{\perp 2}^2}{2p_{z2}} + rac{p_{\perp 3}^2}{2p_{z3}} \ & \simeq -rac{p_{\perp 1}^2}{2E} + rac{p_{\perp 2}^2}{2(1-x)E} + rac{p_{\perp 3}^2}{2xE} \ \end{array}$$

$$E \xrightarrow{\qquad \qquad (1-x)E}$$

This is 2-dimensional non-relativistic QM with

$$(m_1, m_2, m_3) = (-E, (1-x)E, xE)$$

As promised,

$$m_1 + m_2 + m_3 = 0$$

Potential term:

 $V(b_1,b_2,b_3)$ incorporates (statistically averaged) effect of collisions with the medium.

How to put the calculation together:

(1) Solve for propagation in 3-particle QM in shaded region.

(2) Tie together with QFT matrix elements for vertices

$$\propto \sqrt{\text{DGLAP splitting functions}}$$

$$\propto \sqrt{P_{i
ightarrow j}(x)}$$

Simplification: 3-particle QM \rightarrow 1-particle QM

Can use various symmetries of problem to get rid of 2 d.o.f.

$$\mathcal{H} = rac{P_B^2}{2M} + V(B)$$
 [BDMPS-Z (1990's)]

Method 1. Can solve numerically.

[Zakharov (2004+); Caron-Huot & Gale (2010)]

Simplifcation: Harmonic Oscillator

Method 2. High energies \rightarrow very collinear \rightarrow b's small.

So make small B approximation to $V(B) \rightarrow$ a harmonic oscillator problem

$$\mathcal{H}=rac{P_B^2}{2M}+rac{1}{2}M\Omega_0^2B^2$$
 [Baier *et al.* (1998)]

(a non-Hermitian one: $\Omega_0^2 \propto -i$)

What's been done for double brem

Example of an interference contribution:

Previously: results in **soft** limit y << x << 1 for QCD.

Blaizot & Mehtar-Tani; Iancu; Wu (2014)

Our goal: Compute effects of overlapping formation times for **any** *x* and *y*.

Formalism for LPM: double brem

Example of an interference contribution:

To compute: Sew together QFT matrix element for vertices with QM evolution in between.

Simplify: Using symmetries, as before.

Published Work

[all for $g \rightarrow gg \rightarrow ggg$]

crossed diagrams:

Forthcoming

sequential diagrams:

Still in progress

4-gluon vertices, e.g.

virtual corrections, e.g.

correct single brem rate

[parts of which included in y << x << 1 work of earlier refs.]

Summary

Subtle problems in the field theory description of very-high energy showering

can be reduced to problems in

2-dimensional non-relativistic non-Hermitian quantum mechanics and even

2-dimensional non-relativistic non-Hermitian harmonic oscillators!

(Just when you thought you couldn't learn anything more from the harmonic oscillator...)