On the Classification of Four Dimensional Rank-1

N=2 Superconformal Field theories

Yongchao Lü

(based on 1505.04814, 1509.****, 1509.****, with Philip Argyres, Matteo Lotito, Mario Martone)

Outline

- Generality of d=4 N=2 SCFTs
- Coulomb Branch & Seiberg-Witten Curves and 1-forms
- Higgs Branch and Enhanced Coulomb Branch & S-duality
- Conformal Central Charge & Topological Twisting
- Summary and Open Questions

Generality of d=4 N=2 SCFTs

- ► The symmetries of N=2 SCFTs include d=4 N=2 superconformal algebra $\mathfrak{su}(2,2|2)$ and flavor symmetry algebra \mathfrak{f} : unitary irreducible representations \Longrightarrow operator spectrum:
- Primary and decedents
- Short and long multiplets

$$\Rightarrow \{\Delta, (J_L, J_R), R, r, w_{\mathfrak{f}}\}$$

- ► Operator algebras and OPE structure constants
- → Chiral rings w/ non-singular OPEs
- $\{C_{ijk}\}$ determine 3-point correlation functions up to conformal covariance

$$\Longrightarrow$$
 N=2 SCFT data: $\{\Delta, (J_L, J_R), R, r, w_{\mathfrak{f}}\} \cup \{C_{i,j,k}\}$

Generality of d=4 N=2 SCFTs

- ▶ In principle, the consistency full set of N=2 SCFT data can be solved by conformal Bootstrap approach (4-point correlation functions and OPE associativity)
- Not exactly solvable, only certain numerical bounds
- Redundant for the purpose of classification
- ▶ In practice, we single out a sufficiently minimal set of N=2 SCFT data (exactly determined):
- Coulomb branch primary operators (CBO)
- Higgs branch primary operators (HBO)
- Energy-momentum tensor multiplets and conformal central charges a and c: $T \cdot T \to c$, (Not sure how to define a in this way; related to a-theorem of RG flow)
- Global internal symmetry current multiplets and flavor central charges $k: j \cdot j \to k I$. (j can couple with mass deformation parameter: relevant with scaling dimension 1)

Generality of d=4 N=2 SCFTs

- ► CBO and HBO form scalar chiral rings, in turn the coordinate rings of certain algebraic varieties
- ⇒ moduli space of vaccum: (chiral ring/moduli space correspondence)
- CBO ⇒ Coulomb branch (CB)
- HBO ⇒ Higgs branch (HB)
- CBO+HBO \Longrightarrow enhanced Coulomb branch (ECB): Higgs factor fibering over CB
- ▶ Various central charges a, c, k can be uniformly related to scale anomaly in the background metric and background gauge fields for the flavor symmetries, $\Theta \sim a$ (Euler) + c (Weyl) + k Tr(F^2), in turn to 't Hooft anomaly of global symmetries by N=2 superconformal symmetry
- $(\Theta \Longrightarrow \partial_{\mu}j^{\mu}_{U(1)_R} \propto \text{gravitational and gauge instanton number density})$

Coulomb Branch & Seiberg-Witten Curves and 1-forms

- ► Coulomb branch is holomorphically parametrized by vev of CBOs
- $\dim_{\mathbb{C}}CB = \#$ of $CBPOs \equiv rank$ of N=2 SCFT = r
- Generic locus P: N=2 free abelian vector-multiplet and massive BPS dyons (and other massless neutral hypermultiplet; ECB)
- ullet Singular locus S: codim ${\mathbb C} {\mathsf S}=1$, characterized by EM monodromy on special coordinates and charge lattice
- ⇒ in terms of Seiberg-Witten (or Donagi-Witten) geometry: complex-dim r torus fibering over CB
- ▶ For the case of rank 1, holomorphic coordinate u, $S \equiv pt$ s
- w/n mass deformation and # S = 1: Kodaira classification of singular elliptic fibration over u plane; N=2 SCFT at S.
- w/ mass deformation: depending on flavor symmetry, and S splits $\mapsto \{S_i\}$, generic mass: IR free theories at $\{S_i\}$ or other interacting N=2 SCFT admitting no further relevant deformations (remark: This fact is crucial for our strategy)

Coulomb branch & Seiberg-Witten Curves and 1-forms

- \blacktriangleright We have explored the cases in which the deformed CB is topologically \mathbb{C} : Planar CB
- ▶ Seiberg-Witten curves (elliptic curve as complex torus):

$$\Sigma(u, \mathbf{m}): \qquad y^2 = x^3 + f(u, \mathbf{m}) x + g(u, \mathbf{m}),$$

- ullet Weyl-invariant mass terms as coefficient of f and g
- ullet Zeros of Discriminants: location of singularities on u plane
- ▶ The meromorphic 1-form $\lambda(u, \mathbf{m})$ satisfies rigid special Kähler (RSK) conditions constraining its u- and \mathbf{m} -dependence,

$$\partial_u \lambda = \kappa \frac{\mathrm{d}x}{y} + \mathrm{d}\phi, \qquad \text{Residues}(\lambda) \in \{\omega(\mathbf{m}) \mid \omega \in \Lambda_F\}.$$

► The low energy u(1) gauge coupling and BPS central charges can be determined from the periods of 1-form over the curve.

Coulomb branch & Seiberg-Witten Curves and 1-forms

► An ansatz for one-form satisfying RSK condition given by Minahan-Nemeschansky:

$$\lambda(\mathbf{m}) = \left[2\Delta(u) \, \mathbf{a} \, u + 6b \, \mu \, x + 2W(M_d) \right] + \sum_{i} r_i \sum_{\omega_i \text{ orbit}} \frac{y\omega_i(u, \mathbf{m})}{\omega_i(\mathbf{m})^2 \, x - x\omega_i(u, \mathbf{m})} \right] \frac{dx}{y}.$$

- $ightharpoonup a, b, W, r_i, x_{\omega_i}$ are unknowns. Most difficult are x_{ω_i} determined by factorization of curve. (Computer assistance required.)
- ▶ Sum over Weyl orbits of flavor algebra weights ω_i . Weyl group is determined by curve.
- \blacktriangleright Which weights appear and their coefficients r_i determine together with Weyl group the flavor symmetry.

Safe deformations of regular, rank 1, scale-invariant CBs							
Kodaira	deformation	flavor	central charges			Higgs branches	
singularity	pattern	symmetry	k_F	$12 \cdot c$	$24 \cdot a$	h_1	h_0
II^*	$\{I_1^{10}\}$	E_8	12	62	95	0	29
	$\{{I_1}^6, I_4\}$	sp(10)	7	49	82	5	16
III^*	$\{I_1^{\ 9}\}$	E_7	8	38	59	0	17
	$\{I_1{}^5, I_4\}$	$\operatorname{sp}(6) \oplus \operatorname{sp}(2)$	$5 \oplus 8$	29	50	3	8
IV^*	$\{I_1^{\ 8}\}$	E_6	6	26	41	0	11
	$\{I_1{}^4, I_4\}$	$\mathrm{sp}(4)\oplus \mathrm{u}(1)$	$4 \oplus ?$	19	34	2	4
	$\{I_1,I_1^*\}$	$\mathrm{u}(1)$?	14 + h	29+h	h	?
I_0^*	$\{I_1^{\ 6}\}$	so(8)	4	14	23	0	5
	$\{I_1^2, I_4\} \simeq \{I_2^3\}$	sp(2)	3	9	18	1	1
IV	$\{{I_1}^4\}$	su(3)	3	8	14	0	2
III	$\{{I_1}^3\}$	su(2)	8/3	6	11	0	1
II	$\{{I_1}^2\}$	_	_	22/5	43/5	0	0
with the assumption of a frozen IV * SCFT with central charge c'							
II^*	$\{I_2, IV^*\}$	su(2)	?	24c' + h + 4	24c'+h+37	h	?
II^*	$\{I_1{}^2, IV^*\}$	G_2	?	24c' + h + 10	24c'+h+43	h	?
III^*	$\{I_1, IV^*\}$	su(2)	?	$16c'+h+\frac{10}{3}$	$16c'+h+\frac{73}{3}$	h	?
with the assumption of a frozen III * SCFT with central charge $c^{\prime\prime}$							
II^*	$\{I_1, III^*\}$	su(2)	?	18c'' + h + 5	18c'' + h + 38	h	?

Coulomb branch & Seiberg-Witten Curves and 1-forms

- ► The well-known 4d rank-1 SCFTs with ADE flavor symmetries (ADE series):
- Minahan-Nemeschansky theories $(E_n \text{ series})$;
- $\mathfrak{su}(2)$ gauge theory with eight fundamental flavors (D_4 theory);
- Argyres-Douglas theories $(A_n \text{ series})$
- ▶ The less-known 4d rank-1 SCFTs with non-ADE flavor symmetries with \mathfrak{sp} factors (includes $N=2^*\mathfrak{su}(2)$ gauge theory): \mathfrak{sp} series (we take $\mathfrak{sp}(1) \simeq \mathfrak{su}(2)$
- ► Several other conjectured SCFTs are even exotic: Less constructed.
- ▶ Here different N=2 SCFTs are distinguished by their $(\Delta(u), \mathfrak{g}) \Longrightarrow$ Classification ...Next we discuss various N=2 SCFT data of the ADE series and \mathfrak{sp} series

Higgs Branch and Enhanced Coulomb Branch & S-duality

- ▶ HB and ECB-fiber both take hyperkähler structures (i.e., take action under $SU(2)_R$ symmetry):
- ⇒ counting the quaternionic dimensions:
- $h_0 \equiv \dim_{\mathbb{H}} \mathsf{HB}, \ h_1 \equiv \dim_{\mathbb{H}} \mathsf{ECB}\text{-fiber}$

HBOs.

- ► HB and ECB-fiber both take action under flavor symmetry:
- e.g., for F=ADE theories, co-adjoint actions: minimal nilpotent orbits: $\mathcal{O}_{\min}(F)=F_{\mathbb{C}}\cdot(E_{\theta})^*$ this can be understood in terms of N=2 chiral ring relations of
- Conjecture: HB of \mathfrak{sp} series are co-adjoint orbits of flavor symmetry, and can be understood from the N=2 chiral ring relations of HBOs
- For ECB-fiber, non-singular at the tip of the cone (for no charged massless hypermultiplets emerging);
- \Longrightarrow implying ECB-fiber is flat, e.g. \mathbb{H}^n

Higgs Branch and Enhanced Coulomb Branch & S-duality

- ▶ The structure of HB and ECB fibers of E_n and \mathfrak{sp} can be deduced from the N=2 S-duality argument:
- those SCFTs emerge at the cusp of conformal manifold of certain N=2 finite gauge theories.
- ► The HB and ECB of N=2 finite Gauge theories can be classically determined by hyperkähler quotient constructions, and receive no quantum corrections
- The vacuum moduli space structure => This fact can be used to extract the information about the Higgs branch and enhanced branch
- e.g., for E_n series $h_0 = h_{\mathfrak{f}}^{\vee} 1$ (actually application to ADE theories, by F-theory construction)
- e.g., for \mathfrak{sp} series, the ECB fibers are the defining module of \mathfrak{sp} lie algebra: $\mathbb{H}^n \simeq \mathbb{C}^{2n}$ (in terms of $\mathfrak{so}(4n) \supset \mathfrak{sp}(1) \times \mathfrak{sp}(n)$)

Conformal Central Charges & Topological Twisting

- \blacktriangleright Central charges a,c,k can be determined in various ways:
- By S-duality argument (except the $k_{\mathfrak{u}(1)}$) (for E_n series, \mathfrak{sp} series)
- \bullet By holographic methods (for ADE series: admits F-theory construction, i.e. world volume theory of a D3 brane probing 7-brane backgrounds)
- By correspondence to 2d Chiral algebra (for theories admitting Class-S construction)
- By Topological twisting arguments (Shapere and Tachikawa): directly related to the low energy data on CB or EBC
- $SU(2)_L \times SU(2)_R \times SU(2)_I \rightarrow SU(2)_L \times SU(2)_R'$: changing spins
- On curved 4-manifold, $SU(2)_R$ connection = spin connection: relating $SU(2)_R$ instanton to gravitational instanton... (note: twisting hypermultiplet need certain condition on spin structure)

Conformal Central Charges & Topological Twisting

▶ The corresponding partition function of topological twisted sector takes $u(1)_R$ charge:

$$\Delta R = (2a - c) \cdot \chi + \frac{3}{2}c \cdot \sigma - \frac{1}{2}k_i \cdot n_i,$$

▶ In the IR at nonsingular locus on CB, the partition function is expressed as

$$Z = \int [dV][dH]A^{\chi}B^{\sigma} \prod_{i} C^{n_{i}}e^{S_{\mathsf{IR}}[V,H]}$$

with $u(1)_R$ charge

$$\Delta R = \left(R(A) + \frac{1}{4}n_V\right) \cdot \chi + \left(R(B) + \frac{1}{4}n_V + \frac{1}{8}n_H\right) \cdot \sigma + \sum_i \left(R(C_i) - \frac{1}{2}T_i(\mathbf{r})\right) \cdot n_i,$$

Conformal Central Charges & Topological Twisting

▶ Matching UV and IR results (by non-anomalous U_R and 't Hooft anomaly matching) leads to:

$$24a = 5n_V + n_H + 12R(A) + 8R(B)$$

$$12c = 2n_V + n_H + 8R(B)$$

$$k_i = T_i(\mathbf{r}) - 2R(C_i)$$

- ▶ In the rank-1 case, $n_V = 1$, $n_H = h_1$, r has been determined, \Longrightarrow scaling dimension of A, B, C_i to be determined
- ► Holomorphy and EM duality of low energy physics and topological invariance lead to:
- $A(u) = \alpha \det(\frac{\partial u_i}{\partial a_j})$
- B^8 must be a single-valued holomorphic function of u (for $\sigma \in 8\mathbb{Z}$ on spin 4-manifolds)
- C must be a single-valued holomorphic function of u (for instanton number $n \in \mathbb{Z}$)

Conformal Central charges & Topological Twisting

▶ For the rank-1 case $(Z \equiv |\{S_i\}|)$:

$$R(A) = \frac{\Delta - 1}{2}$$

$$R(B) = \frac{\Delta}{8} \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i}$$

In turn the conformal central charge a and c can be determined:

$$24a = 5 + h_1 + 3\frac{\Delta - 1}{2} + \Delta \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i},$$

$$12c = 2 + h_1 + \Delta \sum_{i=1}^{Z} \frac{12c_i - 2 - h_i}{\Delta_i}.$$

Summary and open questions

- ► Classification of 4d rank-1 N=2 SCFTs with planar CB has been performed
- ► A minimal set of N=2 SCFT data has been computed exactly

- \triangleright Further discussion on the flavor central charge k?
- ▶ Similar story of 4d rank-1 N=2 SCFTs with non-planar CB?
- Generalization to higher rank SCFTs?
- ▶ Stringy realization of sp series?
- ▶ Possible d=5 N=1/d=6 N=(1,0) versions?

Thanks!