Photon Detector Designs for the Deep Underground Neutrino Experiment

7 August, 2015

Denver Whittington
Indiana University

On behalf of the DUNE Collaboration
Outline

➢ Principles of photon detection in DUNE
➢ Light guides for a single-phase TPC
 ➢ Baseline design
 ➢ Alternatives
➢ Silicon photomultipliers
➢ Design testing in LAr at FNAL
 ➢ Data-simulation comparisons
➢ Scintillation structure analysis
➢ Continuing hardware R&D
Scintillation from de-excitation of argon molecular state
- 128 nm UV, two components
 - Prompt (singlet state) signal ($\tau \sim 6$ ns)
 - Slow (triplet state) signal ($\tau \sim 1.5$ μs)

Photon signal gives t_0 for transverse position determination
- Calculate drift distance from time of arrival and known drift velocity in TPC E-field
- Resolution of < 100 ns easily attainable

Important for non-beam events
- Proton decay events
- Atmospheric neutrinos
- Supernova burst neutrinos
- Cosmic ray rejection

Particle identification/discrimination
- Ratio of prompt to total light depends on ionization density of track
Light Guides for Large-Area Photon Detection

- Large active-area UV-collecting light guides
 - Acrylic or polystyrene imbued with wavelength-shifting compound
 - Based on design pioneered by MIT
 - Dip-coating w/ TPB in solvent (after studying many different methods)
 - 430 nm light propagated by total internal reflection to end

- Imbed PD paddles inside anode plane assembly behind collection wires
 - Large photosensitive area with small photocathode area
 - Low-voltage SiPM bias
 - Easily scalable
Multiple alternative designs under investigation

- Decouple UV wavelength shifter (WLS) from transport for improved attenuation length

- Dip-coated acrylic bars
 - Baseline design
 - Indiana U, right-most paddle

- WLS panel (VUV → blue) + imbedded WLS fibers
 - Louisiana State U, center

- WLS radiator (VUV → blue) + WLS fibers (blue → green)
 - Colorado State U, left-most

- WLS Radiator (VUV → Blue) + WLS bar (blue → green)
 - Indiana U, cartoon below
Silicon Photomultipliers

- Strongly reverse-biased array of photodiodes
 - Low noise (few Hz in cryo)
 - Excellent charge resolution

Dark noise characteristics in LN2 at $V_{bias} = 24.5$ V

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-0</td>
<td>3.5×10^6</td>
<td>11</td>
<td>0.17</td>
<td>13</td>
<td>484</td>
</tr>
<tr>
<td>A-1</td>
<td>3.6×10^6</td>
<td>9</td>
<td>0.21</td>
<td>12</td>
<td>483</td>
</tr>
<tr>
<td>A-2</td>
<td>3.6×10^6</td>
<td>9</td>
<td>0.18</td>
<td>13</td>
<td>494</td>
</tr>
<tr>
<td>B-0</td>
<td>3.5×10^6</td>
<td>9</td>
<td>0.22</td>
<td>11</td>
<td>460</td>
</tr>
<tr>
<td>B-1</td>
<td>3.6×10^6</td>
<td>8</td>
<td>0.19</td>
<td>14</td>
<td>491</td>
</tr>
<tr>
<td>B-2</td>
<td>3.5×10^6</td>
<td>10</td>
<td>0.19</td>
<td>14</td>
<td>502</td>
</tr>
<tr>
<td>C-0</td>
<td>3.4×10^6</td>
<td>8</td>
<td>0.22</td>
<td>13</td>
<td>492</td>
</tr>
<tr>
<td>C-1</td>
<td>3.6×10^6</td>
<td>10</td>
<td>0.20</td>
<td>12</td>
<td>473</td>
</tr>
<tr>
<td>C-2</td>
<td>3.5×10^6</td>
<td>8</td>
<td>0.18</td>
<td>11</td>
<td>449</td>
</tr>
<tr>
<td>D-0</td>
<td>3.6×10^6</td>
<td>8</td>
<td>0.19</td>
<td>13</td>
<td>468</td>
</tr>
<tr>
<td>D-1</td>
<td>3.5×10^6</td>
<td>9</td>
<td>0.22</td>
<td>13</td>
<td>479</td>
</tr>
<tr>
<td>D-2</td>
<td>3.5×10^6</td>
<td>8</td>
<td>0.22</td>
<td>13</td>
<td>491</td>
</tr>
<tr>
<td>mean</td>
<td>3.5×10^6</td>
<td>9</td>
<td>0.20</td>
<td>13</td>
<td>481</td>
</tr>
<tr>
<td>st.dev.</td>
<td>6.5×10^4</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

- SiPM Signal Processor (SSP)
 - 150 MHz waveform digitizer
 - Argonne Natl. Lab HEP Elec. Group
 - Resolve fine waveform details
 - ~ 3 ns timing resolution
 - 13 μs waveform buffer
Design Tests in LAr at Fermilab

➢ “TallBo” facility at FNAL
 ➢ 84” LAr dewar

➢ Ultra-high purity liquid argon
 ➢ Vacuum to remove residual atmosphere
 ➢ Condenser to maintain closed system

➢ Multiple lightguide designs (fall 2014)
 ➢ Dip-coated acrylic bars
 ➢ Cast acrylic and polystyrene bars
 ➢ Flash-heated spray-coated acrylic bars
 ➢ Y11 fibers w/ TPB-coated acrylic radiator

➢ Hodoscope (cosmic ray) trigger
 ➢ 2 8x8 Arrays of PMTs + BaF crystals
 ➢ CREST cosmic-ray balloon exp't.
 ➢ 2 scintillator paddle planes
 ➢ Allows shower rejection, reconstruction of single tracks
Preliminary Performance Results

- Signals from example hodoscope trajectory
- Data: integrated charge in 10 us waveform [PE]
- Sim: number of incident photons from the line source (toy MC)
Preliminary Performance Results (Baseline Designs)

- Estimated detector efficiency
 - Ratio = [Mean #γ Detected (data)] / [Mean #γ Incident (sim)]

<table>
<thead>
<tr>
<th>Technology</th>
<th>UV Wavelength Shifter</th>
<th>Detector Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>acrylic (uncoated)</td>
<td>none</td>
<td>0.01%</td>
</tr>
<tr>
<td>acrylic, doped</td>
<td>bis-MSB</td>
<td>0.05%</td>
</tr>
<tr>
<td>WLS Fibers w/ Radiator</td>
<td>TPB</td>
<td>0.05%</td>
</tr>
<tr>
<td>acrylic, dip-coated</td>
<td>TPB</td>
<td>0.08%</td>
</tr>
<tr>
<td>polystyrene, doped</td>
<td>bis-MSB</td>
<td>0.08%</td>
</tr>
<tr>
<td>acrylic, doped</td>
<td>TPB</td>
<td>0.08%</td>
</tr>
<tr>
<td>acrylic, dip-coated</td>
<td>TPB</td>
<td>0.10%</td>
</tr>
<tr>
<td>polystyrene, doped</td>
<td>TPB</td>
<td>0.11%</td>
</tr>
<tr>
<td>acrylic, dip-coated</td>
<td>bis-MSB (+50%)</td>
<td>0.13%</td>
</tr>
<tr>
<td>acrylic, dip-coated</td>
<td>bis-MSB (+50%)</td>
<td>0.15%</td>
</tr>
<tr>
<td>acrylic, dip-coated</td>
<td>TPB (+50%)</td>
<td>0.16%</td>
</tr>
</tbody>
</table>

Goal: > 0.3%

- Alternative designs will likely show an improvement by a factor of 2-3
 - Strongly driven by improvements to attenuation
 - Design comparisons at TallBo currently underway
 - Can also explore double-ended readout, more paddles per APA

- Caveats
 - Reflections estimated using WARP measurements
 - Rayleigh scattering not yet modeled (efficiencies underestimated → good!)
Scintillation Structure Analysis

- Time structure of signal at SiPM
 - Deconvolve average waveform from cosmic rays using measured single-PE response (dark noise)

- Three- or four-component models capture all features, including prompt singlet signal (~25%) and 1.5 μs “late light”
 - Evidence for long (~7 μs) component in acrylic light guides (not present in polystyrene)

- Important to understand for timing resolution and pulse-shape discrimination

- Publication in preparation
Continuing Photon Detector R&D

- DUNE Far Detector simulation development (ongoing)
 - Estimate sensitivity of various photon detector system configurations to physics events (proton decay, SN, etc.)

- Current TallBo testing (summer 2015)
 - Direct comparisons of baseline design with all four alternatives

- 35-ton Phase 2 (winter 2015)
 - First test of light guide photon detectors in APA coupled with single-phase TPC

- CERN single-phase TPC prototype (2018)
 - Down-selected photon detector design deployed in single-phase TPC
 - New charged particle beam in CERN north area
 - Comparisons to WA105 dual-phase TPC performance
Conclusions

➢ Lots of progress developing a light guide photon detector for the DUNE LAr TPC
 ➢ Variety of designs have been explored
 ➢ Successful performance comparison tests
 ➢ SiPM readout quite promising for LAr operation
 ➢ Several TPC+PD tests on the horizon

➢ Big effort with thanks to many folks
 ➢ Indiana U.
 • Stuart Mufson, Jim Musser, Jon Urheim, Mark Gebhard, Brice Adams, Mike Lang, Brian Baugh, Paul Smith, Bryan Martin, Bruce Howard, Jonathon Lowery
 ➢ MIT
 • Janet Conrad, Matt Toups, Ben Jones, Len Bugel
 ➢ Colorado State U.
 • Norm Buchanan, Dave Warner, Ryan Wasserman, Dylan Adams, Jay Jablonski, Tom Cummings, Forrest Craft, Andrea Shacklock
 ➢ LBNL – Victor Gehman, Richard Kadel
 ➢ Louisiana State U. – Thomas Kutter
 ➢ Argonne Natl. Lab
 • Gary Drake, Patrick De Lurgio, Andrew Kreps, Michael Oberling, John T. Anderson, Zelimir Djurcic, Himansu Sahoo, Victor Guarino
 ➢ Fermilab
 • Brian Rebel, Stephen Pordes, Marvin Johnson, Ron Davis, Bill Miner
 ➢ (And many others!)