# The CMS Beam Halo Monitor detector system







Kelly Stifter, University of Minnesota

08/04/15

2015 DPF Meeting, Ann Arbor



## Machine-induced background





CMS Experiment at the LHC, CERN

2009-Nov-20 21:29

Run/ Event: 121964 / 62138





## CMS BHM Group



A. Dabrowski<sup>1</sup>, M. Giunta<sup>1</sup>, R. Loos<sup>1</sup>, S. Orfanelli<sup>1,2</sup>, D. Stickland<sup>3</sup>, F. Fabbri<sup>4</sup>, A. Manna<sup>4</sup>, A. Montanari<sup>4</sup>, N. Tosi<sup>4</sup>, M. Ambrose<sup>5</sup>, J. Mans<sup>5</sup>, R. Rusack<sup>5</sup>, K. Stifter<sup>5</sup>



1. CERN, Switzerland



2. NationalTechnicalUniversity ofAthens, Greece



3. Princeton University, USA



4. INFN Bologna, Italy



5. University of Minnesota, USA



#### Outline



- 1. Machine-induced background
- Beam Halo Monitor detector
- 3. Detector system
  - Detector units
  - Electronics
- 4. First results
  - Splashes
  - Correlation to collimator movement
  - Commissioning data



## Machine-induced background (MIB)





- Interactions with collimators
- Beam gas
- **UFOs**





#### Beam Halo Monitor



 Purpose: Provide an online, bunch-by-bunch, per beam MIB rate arriving at CMS at high radius





#### Problem



• Many more collision products (~10<sup>4</sup>Hz/cm<sup>2</sup>) than MIB particles (~1Hz/cm<sup>2</sup>) CMS Proton Collisions 7TeV per beam



- Must find MIB signal amidst collision products → factor of ≥10<sup>4</sup> suppression required
- Solutions: DIRECTION-SENSITIVITY and PRECISION TIMING



## Direction sensitivity



MIB muon: Arrives with incoming beam. Cherenkov radiation is seen by PMT.



Collision product: Arrives in opposite direction. Cherenkov radiation is absorbed by black paint.

#### Cherenkov radiation:

- ✓ Insensitive to neutron and gamma backgrounds
- ✓ Prompt signal in time with incoming particle
- ✓ Use quartz, radiation hard & UV transmissive
- ✓ Large signals ~60 p.e./cm for forward particle

#### 2014 DESY test beam:

Background rejection of >99.99% With forward acceptance of >98%



## **Timing**



Golden locations allow for maximum separation in timing

$$GL_{k+1} = \left(\frac{1}{4} + \frac{1}{2}k\right) \cdot (\text{BX spacing}) \approx 1.875m + 3.75m \cdot k$$





## Detector placement







- Golden location 6 20.6m from IP
- 40 detectors, 20 at each end
- Acceptance of 21.2 cm<sup>2</sup>/unit, 424 cm<sup>2</sup>/beam
- Installed at radius of 1.8m from beam
- Placed in φ-region of highest flux



#### **Detector units**



- SQ0 synthetic fused silica: 10 cm long, 5.2 cm diameter,
  UV transmissive, radiation hard
- Optically coupled to UV sensitive Hamamatsu R2059 PMT
- 3 layers of magnetic shielding: Permalloy, mumetal, iron





#### **Detector units**



- SQ0 synthetic fused silica: 10 cm long, 5.2 cm diameter,
  UV transmissive, radiation hard
- Optically coupled to UV sensitive Hamamatsu R2059 PMT
- 3 layers of magnetic shielding: Permalloy, mumetal, iron





#### Read-out chain





- Every BX, every detector → get 8-bit charge and 6-bit timing information
  - Histogram (μHTR)
- Calculate flux
  - Published to CMS and LHC operations every ~23s





## Splashes



 Indication of directionality: a unit measuring beam 2 sees only beam 2 splashes, no beam 1 splashes





## Correlation to collimator movement







LHC-B



## Detector commissioning



- Commissioned with low detector thresholds
- Detailed bunch structure seen
- Tail consistent with albedo from cavern





## Detector commissioning



Three bunches of pure background





### Summary



- New Beam Halo Monitor (BHM) will provide an online, bunch-by-bunch, per beam MIB rate arriving at CMS at high radius
- Takes advantage of directional nature of Cherenkov radiation and golden location timing to separate MIB from collisions product signals





## Acknowledgements



University of Minnesota: R. Rusack, J.
 Mans

BRIL: A. Dabrowski

• BHM: N. Tosi, S. Orfanelli

Other UMN, CERN, and Bologna







## **ADDITIONAL SLIDES**





#### The CMS detector







## Beam, Radiation, Instrumentation, and Luminosity







#### MIB vs. PP







#### Beam halo contributions







#### MIB muons







#### PP muons







## PP electrons







## Cherenkov angle





$$E_{th} = \frac{nmc^2}{\sqrt{n^2 - 1}} \approx 142 \text{ MeV for muons}$$



#### Cherenkov radiation



Wavelength [nm]

$$\frac{\partial^2 N}{\partial x \partial \lambda} = \frac{2\pi\alpha}{\lambda^2} (1 - \frac{1}{\beta^2 n(\lambda)^2})$$



**Figure 9** The wavelength of the Cherenkov light produced (left) and detected by the photocathode (right) as simulated when a muon of 4 GeV crosses 10 cm long quartz radiator, entering from the centre of the front face of the bar.



## **Timing**



Golden locations allow for maximum separation in timing

$$GL_{k+1} = \left(\frac{1}{4} + \frac{1}{2}k\right) \cdot (\text{BX spacing}) \approx 1.875m + 3.75m \cdot k$$





#### Test beam results



Test beam studies performed at CERN in 2012





#### Test beam results



Test beam studies performed at DESY in 2014



Amplitude cut: Backward suppression to 0.01%, forward acceptance 100%



## Test beam timing







#### Hamamatsu R2059









#### Radiation studies



• Unit irradiated with 3000 fb<sup>-1</sup> of γ rays







#### **Detector units**



Permally layer





### **Detector units**



Mumetal layer





# Magnetic shielding efficiency

■PN06

◆PF03▲MF08×MN03





•Gain decreases as field increases

•Largest decrease ~10%





# Patch panel



Acts as passive splitter and attenuator





#### Read-out electronics





- QIE10: digitizer
- uHTR: histogramming unit
- Other units: power, clocks, slow control, data read-out



#### **Electronics Overview**







### QIE10



Reads analog PMT signal

#### 24 QIE10 ASICs:

- Integrates charge over 25ns, produces 8-bit ADC value (0-340pC)
- Produces 6-bit TDC value based on fixed-threshold leading edge measurement (.5ns resolution)

#### Igloo2 FPGAs:

- Collect and format data
- Data sent to back-end via 5Gbps asynchronous optical link





# QIE10 Range





Fraction of Range 0 Scale



# QIE10 input







# QIE10 block diagram







# uHTR block diagram







### Setting thresholds



Cut out majority of PP events, in addition to cosmics





# Setting thresholds









### Read-out electronics: VME



Background rate:

Fan out

Discriminator

Scaler

**Amplitude** measurement:

Fan out

→ QDC





# Calibration system



- Measures health of system over time
- UV LED pulses of known timing and amplitude distributed to all PMTs, plus reference





# Temporary calibration system



Measures health of system over time

UV LED pulses of known timing and amplitude distribut PMTs, plus reference Mirror Blue LEDs Temporary Calibration Card Detectors 4 anode **PMT** 



# Calibration system



Delivers pulses of expected signal size, ~600 photoelectrons





### BHM in BrilDAQ



 BrilDAQ: based on xDAQ publisher/subscriber framework

- bhmsource reads out histograms from uHTRs
- bhmprocessor calculates background rate for each beam, publishes every lumi section (2<sup>18</sup> orbits = ~23s)





# System overview







# Splash events



 Send a bunch directly into the TCTs – creates a 'splash' of particles in one direction



Splash



# Splashes



#### Beam 1 splashes, PF10 and MN07





08/04/15

### Beam losses









### VME results



