NOvA Disappearance Analysis

Kirk Bays
California Institute of Technology
APS DPF, Ann Arbor
August 7, 2015
NOνA Overview

- Source: NuMI ν_μ beam (FNAL)
- Far Det (FD) (810 km @ Ash River, MN)
- Near Detector (ND) (1km @ FNAL)
- 15 mrad off axis (tight energy peak @2 GeV)
- Appearance and disappearance oscillation physics (parallel analyses)
- Beam upgrading to 700 kW (currently 500)
- Beam pulse: 10 μs every 1.33 s
• **FD (at Ash River, MN, 810 km baseline):**
 – 16m x 16m x 60m, 14kton, on surface
 – ~2/3 LS by mass, ~344,000 cells, 28x32 planes
 – 99.5% of channels operational

• **ND (@ FNAL, 1km from NuMI target):**
 – 4m x 4m x 16m, 0.3kton, underground
 – ~20,000 cells, design similar to FD
 – main differences: size and ND muon catcher

• High resolution tracking calorimeters
• Radiation length = 38 cm = 6-10 cells
• Cells filled with liquid scintillator, wavelength shifting optical fiber
• Fiber traps light, channels it to an Avalanche Photo Diode (APD)
νμ Disappearance

• Start with a νμ beam (NUMI @ FNAL)
• νμ ’s oscillate to other flavors
• Survival probability:
 \[P(ν_μ \rightarrow ν_μ) \approx 1 - \sin^2(2θ_{23})\sin^2(1.27Δm^2_{32}L/E) \]
• Direct measurement of θ_{23} (maximal?), Δm^2_{23}
• Backgrounds for disappearance:
 – NC neutrino events
 – Cosmic ray background
• Signature is high E muon, possible vertex hadronic activity
550 μs exposure of the Far Detector

Diagram showing the layout of the detector with labels for '+' side, '-' side, top, and bottom sides, as well as the beam direction.
Time-zoom on 10 μs interval during NuMI beam pulse
Lots of pieces I don’t have time to go into detail on!

- **Calibration:**
 - Stopping μs \rightarrow Absolute E scale
 - π^0, Michels, μ dE/dx ...
 - WLS fiber attenuation corrections

- **Simulation:**
 - **FLUKA/FLUGG:** Beam hadron neutrino flux
 - **GENIE:** Neutrino interactions and FSI
 - **GEANT4:** Detector simulation

- **Reconstruction:**
 - Cluster in space and time (event)
 - Kalman filter based tracking
Energy Reconstruction:

• 2-part energy estimation:
 – 1) muon E from track length
 – 2) hadronic E from non-muon hit calorimetry
 – \(E_\nu = E_\mu + E_{\text{HAD}} \)

• \(\sim 7\% \) FD energy resolution

• Estimators trained on MC

Hadronic E modeling:

• Simulation (GENIE) hadronics inaccurate

• Not unexpected; limited data in this regime, no GENIE 2p2h

• Too many hadronic hits in MC, and thus too large of a reconstructed neutrino E

• To fix this we apply a 21\% correction to hadronic E (6\% \(E_\nu \))

• This fixes the neutrino E distribution, studies ongoing for deeper understanding

• This 21\% is a recalibration applied to data to account for MC being off
Event Selection

- **Step 1: basic quality**
 - remove unusable data
 - require good tracks

- **Step 2: containment**
 - veto events with activity in outer 2 cells
 - look at track projections to wall, veto if too few unhit cells to wall (≤ 10 in FD)

- **Step 3: select muons**
 - use 4 parameter kNN
 - includes track length, dE/dx, scattering information
 - primary NC rejection
Event Selection

- Step 4: cosmic rejection
 - FD only (ND underground)
 - need $\sim 10^7$ cosmic reduction!
 - 11 variable BDT
 - main handles:
 - track directions
 - hadronic activity
 - nearness to detector top
 - BDT combined with hard cuts
Extrapolation and Systematics

- The next talk is just about this! *(L. Suter, Extrapolation Techniques...)*
- Basically a far/near extrapolation
- 16 systematics, 4 oscillation parameters marginalized over in fit
- Dominant systematic is 100% on E_{HAD} correction
- full 3-flavor fit

Data set

- Data taken as detector built; thus multiple FD detector configurations
- Simulations mirror this accurately
- FD: 3.466×10^{20} POT
- ND: 1.66×10^{20} POT
- Quote POT as 14 kton equiv. POT
- Allows easy comparison as we accumulate more data
- **First results public as of yesterday!**
Main timing window

2nd window needed for some early data due to understood timing shift.
Example final sample event

+ side
- side
top
bottom
beam direction
Example final sample event
Example final sample event
Real data: 33 events (0-5 GeV)
Unoscillated prediction: 201 events
1.4 \pm 0.2 of which are cosmics (cosmic estimation: out of time data)
2.0 of which are other background (from simulation, mostly NC)

Clear oscillation deficit
\[P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - \sin^2(2\theta_{23})\sin^2(1.27\Delta m^2_{32} L/E) \]

\(\theta_{23} \) controls normalization
\(\Delta m^2_{32} \) controls position of dip
Best fit: $12.64 / 16$ d.o.f.

systematics pull fit due to deficit of data in high E tail
1-D 68\% limits:

$\Delta m^2_{32} = 2.37 \pm 0.16 \times 10^{-3} \text{ eV}^2$

$\sin^2(\theta_{23}) = 0.51 \pm 0.10$

NOvA Preliminary

Normal Hierarchy

(Feldman-Cousins contours will be used for paper)

NOvA 2.74\times1020 POT-equiv.

- 90\% CL
- 68\% CL
Agreement with T2K and MINOS
This is only 7.6% of NOvA total planned exposure!
with 1 more year data, and the hadronic E better understood
Conclusions

• NOvA detector complete, beam partially upgraded, more upgrades underway
• NOvA first results public (as of just yesterday!)
• Disappearance analysis sees clear oscillations
• Contours agree with T2K, MINOS
• Less than 8% of final exposure so far!
• Look for more soon!
Thanks!

~40 Institutions, > 220 members, 6 countries
Backups
Very close agreement with MC estimated sensitivity!
1-D χ^2 profiles
Real data: 33 events (0-5 GeV)

Unoscillated prediction: 201 events

1.4 ± 0.2 of which are cosmics (cosmic estimation: out of time data)

2.0 of which are other background (from simulation, mostly NC)