Search for exotic transitions of muon neutrinos to electron neutrinos with MINOS

Marianna Gabrielyan

Department of Physics University of Minnesota

> DPF2015 Ann Arbor, MI

A A A

M. Gabrielyan (UMN)

Outline

- 2 MINOS Experimental Setup
- 3 NuMI Beamline
 - MINOS ν_e Appearance
- 5 MINOS+ Physics Goals
- Sterile Neutrino Sensitivity with MINOS+

Summary

< ロ > < 同 > < 回 > < 回 >

Oscillation Phenomenon

Neutrino oscillations arise because two fundamentally distinct eigenstates characterize the neutrino.

- Mass eigenstates (ν₁, ν₂, ν₃): Describe the propagation of the neutrino.
- Flavor eigenstates (ν_e, ν_µ, ν_τ): Describe the interaction behavior of the neutrino.
- Two basis are related by Pontecorvo–Maki–Nakagawa–Sakata (PMNS) unitary mixing matrix.

$$|
u_{lpha}
angle = \sum U_{lpha j} |
u_j
angle$$
, where $lpha = e, \mu, \tau$ and $j = 1, 2, 3$

イロト 不得 トイヨト イヨト

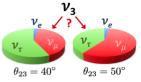
Oscillation Phenomenon

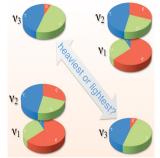
PMNS mixing matrix is characterized by 4 free parameters: three Euler angles $\theta_{12}, \theta_{23}, \theta_{13}$ as well as the CP-violating phase, δ .

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

where $s_{ij} = sin[\theta_{ij}]$ and $c_{ij} = cos[\theta_{ij}]$.

- Measured three mixing angles: θ_{12} , θ_{23} and θ_{13}
- Measured two mass splittings: $|\Delta m_{32}^2|$ and Δm_{21}^2

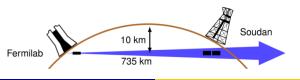

Parameter	Best Fit Value
Δm_{21}^2	$(7.60 \pm (-0.18, +0.19)) imes 10^{-5} eV^2$
Δm_{32}^2	$(2.40 \pm (-0.07, +0.05)) imes 10^{-3} eV^2$
θ_{12}	0.60 ± 0.02
θ_{23}	$0.85 \pm (-0.13, +0.03)$
θ_{13}	0.15 ± 0.03


イロト 不得 トイヨト イヨト

Neutrino Physics: Open Questions

Neutrino mass is the first experimentally confirmed case of Physics beyond the Standard Model.

- Mass hierarchy (sign of Δm_{32}^2)
- CP violation in lepton sector (magnitude of δ_{CP})
- θ_{23} octant: Nature of ν_3 and contributions of ν_{μ} and ν_{τ}



This Talk

• Is there more to this picture: additional neutrino flavors, new types of interactions ?

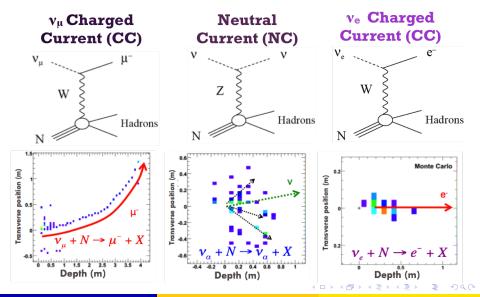
MINOS: Main Injector Neutrino Oscillation Search

- Long Baseline Experiment, utilizing the Fermilab NuMI ν_{μ} beam
- Two functionally identical magnetized tracking calorimeter detectors to study neutrino flux
- Cancellation of neutrino beam flux and cross-section uncertainties.
- Measure NuMI Neutrino beam energy and flavor composition with two detectors over 735 km ($L/E \sim 500 km/GeV$)

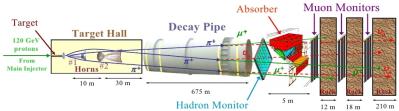

MINOS Experimental Setup

MINOS Detector Designs

Near Detector

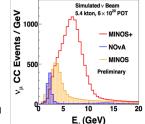

- 1 kton, 100 m Underground
- 1 km away from NuMI target
- Steel / Scintillator planes, \sim 1.3T field

Far Detector


- 5.4 kt, 714 m underground
- 735 km away from NuMI target
- Steel / Scintillator planes, \sim 1.3T field

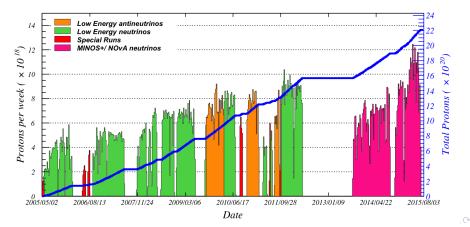
Event Topology

M. Gabrielyan (UMN)

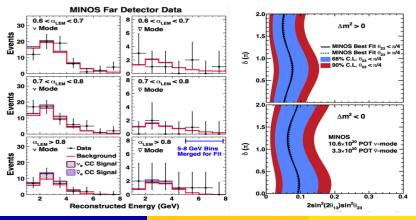

NuMI Beamline

- Production: 120 GeV proton beam from Main Injector collides with graphite target. Focusing:
 - Focus π^+/K^+ for neutrino beam
 - Focus π^-/K^- for antineutrino beam

Decay: Hadrons decay in the 675m long decay pipe Result: Wide-band on-axis ν_{μ} beam


MINOS+: Will take advantage of the upgraded medium energy beam for NO ν A (\sim 700kW) Result: Higher intensity, higher energy ν_{μ} beam

NuMI Beamline

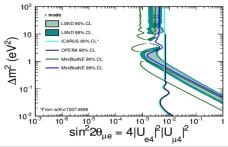

Protons On Target (POT) History

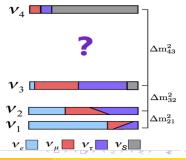
- MINOS Neutrinos = $10.71e^{20}$
- MINOS Antineutrinos = 3.36e²⁰
- MINOS+/NO ν A Neutrinos = 6.4 e^{20}

MINOS ν_e Appearance

- ν_e appearance provides sensitivity to θ_{13} , θ_{23} octant, mass hierarchy and δ_{CP}
- *v_e* signal events separated from NC background by selecting electromagnetic showers
- Extrapolated ND to FD predictions

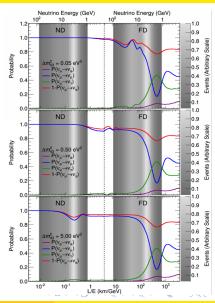
M. Gabrielyan (UMN)

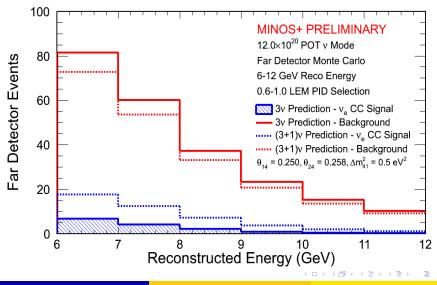

MINOS+ Physics Goals


- Concurrent run with NOvA experiment with updated NuMI beam.
- Precision measurement of the three-flavor oscillation parameters.
- Higher statistics: Expected \sim 4000 ν_{μ} CC events/year at the Far Detector.
- The only wide-band beam long-baseline experiment currently running.
- Search for new exotic phenomena
 - Sterile neutrino mixing
 - Non-standard interactions

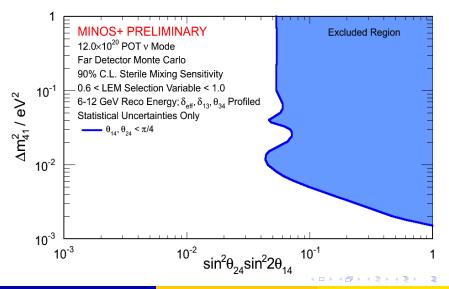
Sterile Neutrino Search in ν_e Appearance

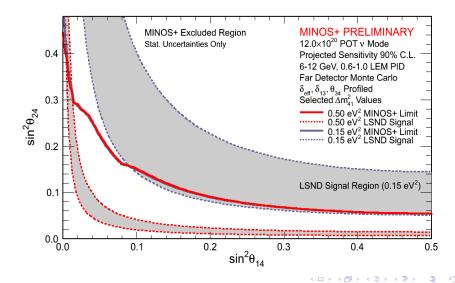
Possibility of one or more additional light sterile neutrino states


- Add 1 new flavor state (v_s)
- Add 1 new mass state (v₄)
- Additional 4 parameters: θ₁₄, θ₂₄, θ₃₄ and Δm²₄₃
- Anomalies were observed in:
 - Short baseline neutrino experiments
 - Reactor neutrino experiments
 - Radiochemical experiments



MINOS+ Sterile Oscillations


- Signature of ν_μ → ν_s in MINOS: Energy-dependent depletion in both NC and ν_μ-CC energy spectra
- Small Δm_{43}^2 : $(10^{-3} 10^{-1} eV^2)$
 - FD: Additional oscillations above 3-flavour oscillation maximum
 - ND: unaffected
- Medium Δm_{43}^2 : $(10^{-1} 1 eV^2)$
 - FD: Rapid oscillations average out resulting in constant depletion
 - ND: unaffected
- Large Δm_{43}^2 : $(1 10^2 eV^2)$
 - FD: Constant depletion
 - ND: oscillations must be accounted for when extrapolating to FD


MINOS+: Sterile Neutrino Sensitivity

MINOS+: Sterile Sensitivity Contours

MINOS+: Sterile Sensitivity Contours

Summary

- NuMI beamline is being upgraded to increase the power to 700kW
- MINOS+ is collecting new high-statistics data with medium energy beam
 - New precision measurements of 3-flavor oscillation parameters in an unexplored energy range
 - Sterile neutrino search
- MINOS ν_e appearance can be used to set new constraints on low-mass sterile mixing parameters

< ロ > < 同 > < 回 > < 回 >

Summary

THANK YOU!

Accelerator Upgrades

Fermilab accelerator complex is upgrading to go from 250 kW to 700 kW for NO ν A experiment.

- First stage: Use Recycler for 'slip stacking' protons (250 kW → 500 kW).
- Second stage: Upgrading RF cavities to reduce the cycle time from 2.2 s to 1.33 s. (500 kW → 700 kW).
- Upgrade the target station to safely handle the increase power.
- Assuming overall complex efficiency of 61% and a running time of 44 weeks per year, 700 kW corresponds to 6.0 × 10²⁰ protons per year.

ν_e Appearance

Measure
$$\nu_{\mu} \rightarrow \nu_{e}$$
 Oscillation
Probability in the Vacuum

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \frac{\sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}\Delta}{-\alpha sin2\theta_{13}sin\delta_{CP}sin2\theta_{12}sin2\theta_{23}\Delta sin\Delta sin\Delta} \\ &+ \alpha sin2\theta_{13}cos\delta_{CP}sin2\theta_{12}sin2\theta_{23}\Delta sin\Delta cos\Delta \end{split}$$

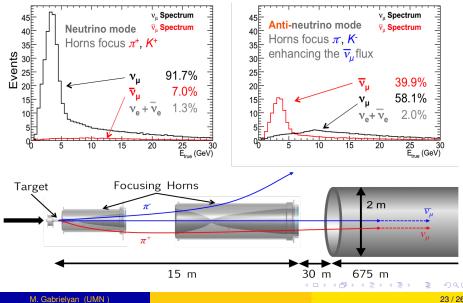
$$lpha = \Delta m_{21}^2 / \Delta m_{31}^2$$
 $\Delta = \Delta m_{31}^2 L / (4E)$

Appearance Probability $P(\nu_{\mu} \rightarrow \nu_{e})$ is sensitive to: θ_{13}, θ_{23} Octant, δ_{CP}

Backups

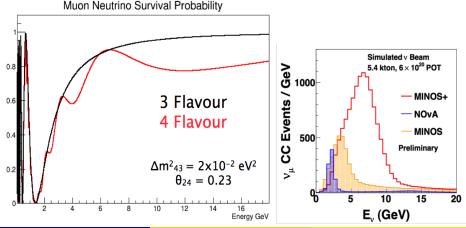
ν_e Appearance

$$\begin{split} & \text{Measure } \nu_{\mu} \rightarrow \nu_{e} \text{ Oscillation} \\ & \text{Probability in the Matter} \end{split} \\ & P(\nu_{\mu} \rightarrow \nu_{e}) \approx sin^{2} 2\theta_{13} sin^{2} \theta_{23} \frac{sin^{2}(A-1)\Delta}{(A-1)^{2}} \\ & -\alpha sin2\theta_{13} sin\delta_{CP} sin2\theta_{12} sin2\theta_{23} \frac{sinA\Delta}{A} \frac{sin(A-1)\Delta}{(A-1)} sin\Delta}{(A-1)} \\ & +\alpha sin2\theta_{13} cos\delta_{CP} sin2\theta_{12} sin2\theta_{23} \frac{sinA\Delta}{A} \frac{sin(A-1)\Delta}{(A-1)} cos\Delta \end{split}$$


$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$$
, $\Delta = \Delta m_{31}^2 L / (4E)$, $A = G_f n_e L / (\sqrt{2}\Delta)$
Appearance Probability $P(\nu_\mu \rightarrow \nu_e)$ is sensitive to:
Mass hierarchy and matter effects

2

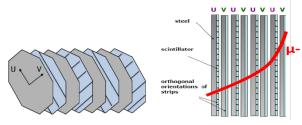
<ロ> <問> <問> < 回> < 回> 、

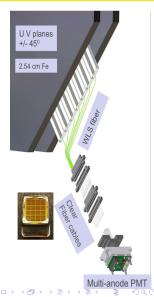

Backups

NuMI Beam Composition

Sterile Oscillations

- Sterile Neutrino oscillation is high energy phenomenon
- MINOS+ allows access to higher energy region to study Sterile Neutrino oscillations




M. Gabrielvan (UMN)

Backups

Detector Redout

- Series of octagonal planes
- Each plane consists of 1 in steel, 1 cm thick, 4.1 cm wide plastic scintillator
- Optimized for μ^+/μ^- detection
- Magnetized to \sim 1.3 T for neutrino antineutrino separation.

Particle Identification: LEM= Library Event Matching

- Large number of Signal and Background events are generated by Monte Carlo simulations to create Event Library
- Compact Electromagnetic showers are selected as ν_e-CC event candidates.
- ν_e -CC candidates are matched to Library Events
- 50 best matches are fed to Artificial Neural Network (ANN)
- Statistical selection algorithm generates *α*_{LEM} parameter value for particle selection.
- As $\alpha_{LEM} \rightarrow 1$, more ν_e -CC signal like events

・ロト ・四ト ・ヨト ・ヨト