Search for $B^0 \rightarrow \ell^+ \ell^$ at Belle

Kimberly Williams Virginia Tech DPF, August 4, 2015

Content

- Belle experiment
- Data skimming
- Cut optimization
- Sensitivity study
- Linearity study
- Summary and Plan

The Belle Collaboration has accumulated 772 million events at the $\Upsilon(4S)$ resonance.

Data-taking ended in 2010 and was reprocessed with better tracking in 2011. Analysis of these data is on-going. 1200 $1.02~\mathrm{ab}^-$ 1000 On resonance: $\Upsilon(5S): 121 \text{ fb}^{-1}$ 800 $\Upsilon(4S): 711 \text{ fb}^{-1}$ 600 3 fb^{-1} $\Upsilon(3S)$: $25 \, \text{fb}^{-1}$ $\Upsilon(2S)$: 400 6 fb^{-1} $>\Upsilon(1S)$: 200 Off resonance/scan: 155 fb^{-1} 1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1 KEKB instantaneous luminosity: $\mathcal{L} = 2.1 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

 $\sqrt{s} = 10.58 \text{GeV} \rightarrow \text{e+e-} \rightarrow \Upsilon(4\text{S}) \rightarrow \text{BB}$ Peak luminosity = $2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ Integrated luminosity ~= 1000 fb⁻¹

SVD measures BB vertices.

The Silicon Vertex Detector provides vertex reconstruction resolution of better than 100 µm.

CDC provides tracking data.

The Central Drift Chamber provides:

- 3D trajectories and momentum vectors
- Measurement of charged particle energy loss in the chamber gas (dE/dx) for particle identification

ECL identifies electrons.

The electromagnetic calorimeter is the main sub-detector for electron identification.

The ECL also detects photons.

KLM identifies muons.

The K_{Long}-µ detector identifies muons and K_L particles over a large momentum range.

The sub-detectors combine for efficient particle identification.

The standard model allows for $B^0 \rightarrow e^+e^-$ and $B^0 \rightarrow \mu^+\mu^-$ but not $B^0 \rightarrow e^\pm \mu^\mp$.

 $B^0 \rightarrow e^+e^-$ and $B^0 \rightarrow \mu^+\mu^$ proceed through flavor changing weak current.

 $B^0 \rightarrow \ell^+ \ell^-$ is a helicity suppressed decay. Either the lepton or antilepton must be in a suppressed state.

9

Extensions of the standard model could allow $B^0 \rightarrow e^{\pm} \mu^{\mp}$ to occur.

Neutrino Oscillation ($\approx 10^{-60}$)

Hypothetical particles like leptoquarks

Any observation of $B^0 \rightarrow e^{\pm} \mu^{\mp}$ would indicate new physics.

Previous studies have set upper limits on branching fractions.

Mode	Standard Model Prediction	Measured Branching fraction	Experiment
B→e ⁺ e ⁻	2.3×10 ⁻¹⁵	<8.3×10 ⁻⁸	CDF
B→μ ⁺ μ ⁻	I.0×10 ⁻¹⁰	<6.3×10 ⁻¹⁰	LHCb
Β→e±μ∓	0	<2.8×10 ⁻⁹	LHCb

LHCb measured $\mathcal{B}(B_s \rightarrow \mu^+\mu^-) = [3.1\pm0.7]\times10^{-9}$

K.A. Olive *et al.* (Particle Data Group), Chin. Phys. C, **38**, 090001 (2014)

Skimming requirements

- Uses one positive and one negative track to form a B candidate.
- Skim pass range
 - -I.0 GeV $\leq \Delta E \leq 0.5$ GeV
 - 5.20 GeV/ $c^2 \le M_{BC} \le$ 5.30 GeV/ c^2
- Skimmed data are written to ROOT files for analysis.

ΔE has an asymmetric range to allow for electron bremsstrahlung.

Continuum suppression variables: Event shape

Continuum suppression variables: $cos\theta_B$

Continuum suppression variables: Δz

Continuum suppression variables are combined into a single likelihood ratio.

Around 10% of events have no Δz .

- These are otherwise good events but with a failed vertex reconstruction.
- These events are treated separately.
- All events are recombined into one data set at the end of analysis.

A cut on N_{track}≥5 helped reduce continuum and tau-pair bkgs.

Number of events expected for one stream of data across full fit region $(5.2 \le M_{BC} \le 5.3 \text{ GeV/c}^2 \text{ and } |\Delta E| \le 0.5 \text{ GeV})$

A cut on the pion ID reduces B→Kπ background.

$$\mathcal{L}_{\pi/K} = rac{\mathcal{L}_{\pi}}{\mathcal{L}_{\pi} + \mathcal{L}_{K}}$$

- Cut is placed at $\mathcal{L}_{\pi/K} \ge 0.5$.
- Reduces B → Kπ by a factor of 10 and B → KK by a factor of 100.
- Signal modes reduced by 0% - 3%.

A sensitivity study found the best expected upper limit.

- Use null signal and the expected number of background events.
- Generate 10,000 toy MC sets.
- Fit toy MC to PDFs of signal and background.
- Extract signal yield.
- Optimize cuts on continuum suppression to get best sensitivity on branching fraction.

Calculate

$$BF_{UL} = \frac{UL90}{\varepsilon_{sig}N_{events}}$$

Linearity study: Previous method used standard ROOT fits.

- Gives negative bias for #signalgen < 5
- Negative bias is caused by a low tail in number of fitted signal yield distribution

Linearity study Provious

Mbc

method used

Linearity Study: New method uses multiple initial guesses.

- Good for #signal_{gen} > 0.
- #signal_{gen} = 0
 values show
 improvement
 but still low
 (-0.7 → -0.8).

Summary and Plan

SUMMARY

- Skimmed data
- Optimized cuts
- Completed sensitivity and linearity studies

PLAN

- Unblind the study
- Calculate systematic errors
- Publish results