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nPDFs and Nuclear Corrections
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Nuclear Modifications to PDFs

� Nuclear PDFs (nPDFs) can show significant modifications to free
proton PDFs.

� DIS data suggest several
types of corrections:

I Shadowing
x < 0.05− 0.1

I Anti-shadowing
0.1 ≤ x ≤ 0.3

I EMC effect
0.3 ≤ x ≤ 0.8

I Fermi motion
x > 0.8

(Schienbein et. al. arXiv:0907.2357v2)
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Nuclear Modifications

� The nuclear modifications are present in the PDFs, but appear in
different regions of x than for the observables.

� We expect modifications to any hadronic observable involving heavy
nuclei.
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nCTEQ PDFs

� The nCTEQ proton PDFs are parameterized according to the
following prescription;

x fk(x ,Q0) = c0x
c1(1− x)c2ec3x(1 + ec4x)c5

k = uv , dv , g , ū + d̄ , s, s̄ ,

d̄(x ,Q0)/ū(x ,Q0) = c0x
c1(1− x)c2 + (1 + c3x)(1− x)c4

� The nuclear A-dependence is then applied to the coefficients in the
parameterization.

ck → ck(A) ≡ ck,0 + ck,1
(
1− A−ck,2

)
, k = {1, . . . , 5}

(Schienbein et. al. arXiv:0907.2357v2)
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EPS PDFs
� Another popular nPDF set is EPS09.

� In this analysis, an x-dependent nuclear correction is factorized from a
fixed proton PDF.

f Ai (x ,Q) ≡ RA
i (x ,Q)f pi (x ,Q),
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nCTEQ PDFs

� The nCTEQ group has produced a several sets of nuclear nPDFs at
NLO for public distribution.

(Schienbein et. al. arXiv:0907.2357v2)

(Stavreva et. al. arXiv:1012.1178)

� The PDF for a general nucleus can be constructed as a linear
combination of the PDFs using (approximate) isospin symmetry

f
(A,Z)
i (x ,Q) =

Z

A
f
p/A
i (x ,Q) +

(A− Z )

A
f
n/A
i (x ,Q)

(Schienbein et. al. arXiv:0907.2357v2)

� Hessian error sets for the nPDFs are provided for the parameters of
the nuclear correction.
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nCTEQ Errors vs CT10 Errors
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� Error sets have been created for the nCTEQ PDFs by A. Kusina,
K. Kovǎŕık, and T. Ježo.

� The error sets are over 16 eigenvectors. Each family contains 34 PDF
sets.
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ATLAS measurement

(ATLAS Collaboration, PRL 110,022301 92013))

� In January of 2013,
ATLAS released the
results of their Z boson
rapidity distribution for
PbPb collisions at
2.76TeV.

� ATLAS observed 1995
candidate events
corresponding to
0.15nb−1 of integrated
Luminosity.
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ATLAS measurement

(ATLAS Collaboration, ATLAS-CONF-2013-106)

� In November of 2013, ATLAS released the result of their µ+ and µ−

rapidity measurements in PbPb.

� All of the heavy ion runs have been compared to predictions made
with NLO PDFs.
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CMS measurement
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(CMS Collaboration, CMS-HIN-13-007, CERN-PH-EP-2015-054)

� In March of 2015, CMS released the result of their µ+ and µ−

rapidity measurements in pPb collisions at 5.02TeV.

� LHC experiments have yet to detect any nuclear modifications to
Vector Boson cross sections.
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Heavy Ion Collisions

D. B. Clark (SMU) DY an Heavy Ions 4 August 2015 12



Vector Boson Production

� High Energy collisions at the LHC are capable of producing many
electroweak bosons (W /Z ) at high absolute rapidity.

� Properties of these bosons are well constrained making them ideal
”standard candle” measurements for detector calibration.

� The hadronic cross section for Drell-Yan pair production is written

dσ

dQ2 dy
=
∑
a,b

∫ 1

0
dξ1

∫ 1

0
dξ2

d σ̂

dQ2dy
fa/A(ξ1)fb/B(ξ2)

� At LO we can make the approximation,

ξ1 ≈ x1 ≡ τey ,
ξ2 ≈ x2 ≡ τe−y , where

τ ≡ Q√
S
.
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Vector Boson Production

� This means that rapidity measurements for on-shell vector boson
production provide a method for probing the x dependence of the
PDFs.

1

2

3

4

0

-1

-2

-3

-4

0.001

0.0025

0.005

0.01

0.025

0.05

0.1

0.25

0.5

y

Τeff

10
-4

0.001 0.01 0.1 1
10
-4

0.001

0.01

0.1

1

x1c

x2c
τ ≡ Q√

S
.

(Guzey,V. et al, arXiv:1212.5344v1)
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PDF Contributions

� For W± (Z ) production at 2.76TeV, τ ≈ 0.029 (0.033)

� For W± (Z ) production at 5.02TeV, τ ≈ 0.016 (0.018)
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Results
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PbPb vs. p-p Rapidity

� There is an observable shape change for on-shell W+ production.
The difference is up to 20 % in some regions of parameter space.

� These differences should be seen with a higher integrated luminosity
for PbPb collisions.
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PDF Correlations
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� In the high absolute rapidity
region, the error is dominated by
the uncertainty on the down
PDF.

� The up and down distributions
are anti-correlated in x allowing
for flavor decomposition.

� In the central region, the ū and
d̄ uncertainty provides the
largest contribution
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pPb Rapidity

� The shape of the pPb cross sections can be predicted by looking at
the nuclear corrections to the PDFs.

� These predictions are presented in the Center of Momentum frame of
the two nuclei. The experimental results include a 0.465 rapidity shift.
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PDF Contributions
up anti-down charm anti-strange Total
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� Here we look at the u − d̄ and c − s̄ interactions for W+ production.

σDY ∼ fa/A(τey ,Q) ∗ fb/B(τe−y ,Q)
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pPb W Rapidity

� The resulting W+ predictions with nCTEQ15 show significant
differences to the predictions using EPS09 nuclear corrections.
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� Current CMS measurements show tension with the EPS09
predictions. A direct comparison to CMS data is underway to see if
better agreement is possible with nCTEQ PDFs.
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pPb W Rapidity

� The resulting W− predictions with nCTEQ15 also show differences to
the predictions using EPS09 nuclear corrections.
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� Differences with EPS09 are visable for all Vector Bosons and for the
resulting muon distributions.
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Conclusions and Future Work

� Nuclear modifications to PbPb cross sections are up to 20% and
should be visible with a higher integrated luminosity.

� Work is underway to produce predictions at 8.16TeV and 8.80TeV for
pPb cross sections.

� A comparison to AMC@NLO is in progress. AMC will be used in the
next nCTEQ fit containing LHC data.

� Current results from CMS show tension with EPS09 predictions. A
comparison of nCTEQ predictions to recent CMS results is underway.

� The nCTEQ predictions show significant differences to the EPS
predictions at high negative rapidity where the ratio
d(x ,Q0)/u(x ,Q0) is important.
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PDFs and Fitting
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Scattering

� Scattering gives us a tool to study the inner structure of nuclei.

� All scattering is a direct decedent of Rutherford’s scattering.

(
dσ

dΩ

)
Rutherford

=
(αZ )2

4E 2 sin4 θ
2

Elastic Scattering

� Information on the structure of the atom can be determined from the
energy and the scattering angle of the probe.
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DIS

� Scattering off of extended objects introduces structure functions.

� These functions describe non-perturbative physics and contain new
kinematic variables.

DIS

l (k) + p (p)→ l ′
(
k ′
)

+ X

Kinematics

q = k − k ′

Q2 = −q2

x =
Q2

2pq̇
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DIS

� The cross section for DIS is written in terms of the structure functions

dσ

dE ′dΩ
=

α2

4E 2 sin4 θ
2

(
2F1(x ,Q2)

M
sin2 θ

2
+

F2(x ,Q2)

E − E ′
cos2 θ

2

)

� We can write the cross section for inelastic scattering as an
incoherent sum of elastic scatterings off constituents of the proton.
This is the parton model.

dσ

dx dQ2
=
∑
q

∫
dξ fq(ξ)

(
d σ̂eq

dx dQ2

)
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PDFs

� Structure function at LO

F2(x) =
∑
q

e2
q

∫
dξ x fq(ξ)δ

(
ξ − Q2

2pq̇

)

� The PDFs are number densities at LO

Free Quarks Bound Quarks Bound + QCD Effects
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Scale Dependence of PDFs

� The scale dependence of the PDFs is introduced through the DGLAP
equations

dfq(x ,Q2)

d logQ2
=

αs(Q2)

2π

1∫
x

dξ

xi

[
Pqq

(
x

ξ

)
fq(ξ,Q2) + Pqg

(
x

ξ

)
fg (ξ,Q2)

]

dfg (x ,Q2)

d logQ2
=

αs(Q2)

2π

1∫
x

dξ

xi

[
Pgg

(
x

ξ

)
fg (ξ,Q2) + Pgq

(
x

ξ

)
fq(ξ,Q2)

]

� QCD factorization proves the universality of the splitting functions an
allows for separation of hadronic processes into perturbative and
non-perturbative parts.
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Fitting of PDFs

� To fit the PDFs:

I First, we decouple the splitting functions by rotating into a new basis.
I Next, we fit the PDFs to data at some initial scale Q2

0 .
I Finally, we evolve the PDFs using the DGLAP equations.

� The universality of the PDFs then allows us to
use them for any hadronic process.
E.g. Drell-Yan di-lepton production at the LHC

σ =
∑
a,b

∫
dx1 dx2 fa/h1

(x1,Q
2) fb/h2

(x2,Q
2) ˆσab→X (x1x2s)
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Fitting of PDFs

� Every PDF fit begins with a parameterization of ∼ 30 free parameters.

� The x dependence is neither predicted or constrained by pQCD.

� The parameterization should be loose enough that it eliminates bias
from the PDF fit. In practice this is not (completely) possible.

� A generic PDF parameterization is given by

xfk(x ,Q0) = c0x
c1(1− x)c2Pk(x)

where k is the parton being fit and Pk(x) is a polynomial function of
Bjorken-x .

� A best χ2 fit to data (mostly DIS and DY) is then produced.

D. B. Clark (SMU) DY an Heavy Ions 4 August 2015 34



� Experimental data is chosen to provide coverage in x and Q2 plane.
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alternative fits obtained by subjective tuning of selected degrees of freedom. Recent efforts to assess

the uncertainties objectively, using established statistical methods, have been mostly concerned with

the precision DIS experimental data [4–7], rather than the global analysis of all hard scattering data.

As mentioned in the introduction, there are formidable complications when standard statistical

methods are applied to global QCD analysis. The basic problem is that a large body of data from

many diverse experiments,1 which are not necessarily compatible in a strict statistical sense, is being

compared to a theoretical model with many parameters, which has its own inherent theoretical

uncertainties.

In recent papers [10–12], we have formulated two methods, the Hessian and the Lagrange,

which overcome a number of long-standing technical problems encountered in applying standard

error analysis to the complex global analysis problem. We are now able to characterize the behavior

of the χ2 function in the neighborhood of the global minimum in a reliable way. This provides a

systematic method to assess the compatibility of the data sets in the framework of the theoretical

model [27], and to estimate the uncertainties of the PDF’s and their physical predictions within

a certain practical tolerance. The basic ideas are summarized in the accompanying illustration,

adapted from [11]:

The behavior of the global χ2 function in the neighborhood of the minimum in the PDF parameter

space is encapsulated in 2Np sets of eigenvector PDF’s (where Np ∼ 20 is the number of free PDF

parameters), represented by the solid dots in the illustration. These eigenvectors are obtained by

an iterative procedure to diagonalize the Hessian matrix, adjusting the step sizes of the numerical

calculation to match the natural physical scales. This procedure efficiently overcomes a number of

long-standing obstacles2 encountered when applying standard tools to perform error propagation

in the global χ2 minimization approach. Details are given in [10, 11].

The uncertainty analysis for our new generation of PDF’s makes full use of this method. The

result is 2Np + 1 PDF sets, consisting of the best fit S0 and eigenvector basis sets in the plus and

1For our analysis, there are ∼ 1800 data points from ∼ 15 different sets of measurements with very different

systematics and a wide range of precision.
2The obstacles are due to difficulties in calculating physically meaningful error matrices by finite differences, in the

face of (i) vastly different scales of eigenvalues (∼ 107) in different, a priori unknown, directions in the high-dimension

parameter space, and (ii) numerical fluctuations due to (multi-dimensional) integration errors in the theoretical

(PQCD) calculation and round-off errors.

5

� Errors are typically provided by diagonalizing the Hessian

χ2(a) = χ2
0 +

1

2

∂χ2

∂ai∂aj
(a− a0)i (a− a0)j + . . .→ χ2

0 +
∑

iz2
i
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Fitting PDFs

� The PDFs are further
constrained by imposing the
number and momentum sum
rules.

� For the proton:

1∫
0

dx [u(x)− ū(x)] = 2

1∫
0

dx
[
d(x)− d̄(x)

]
= 1

∑
i

1∫
0

dx xfi (x) = 1 CTEQ 10
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LO Rapidity Calculation

� A LO calculation of rapidity shows shape changes due to the
softening of the u (x ,Q) and d̄ (x ,Q) PDFs.

PbPb p-p
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PDF Comparison
� The nCTEQ proton PDF set gives similar predictions to other

commonly used sets.
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PbPb vs. pp rapidity

� No shape change for on-shell Z and W− rapidity is found as we move
from the proton PDFs to Lead.
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� The shapes of the lepton distributions for these bosons are also
indistinguishable.
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