Status of ν_τ appearance search in IceCube and PINGU

João Pedro Athayde Marcondes de André for the IceCube-PINGU Collaboration

7 August 2015
Measuring ν_τ appearance

- From theory: “2-3 osc” is $\nu_\mu \rightarrow \nu_\tau$
 - measured by OPERA (5 events)
 - also observed by SK at $\sim 4\sigma$

- Precise measurement of ν_τ appearance allows verification of unitarity of mixing matrix

- ν_τ CC x-sec turns on at a few GeV
 - need as high ν energy as possible

- However $\nu_\mu \rightarrow \nu_\tau$ oscillation maximum at much lower energies at typical oscillation baselines
 - maximum at 25 GeV for ν traveling through Earth’s diameter

![Plot comparing the total charged current ν_μ (solid) and ν_τ (dashed) per nucleon cross sections divided by neutrino energy and plotted as a function of neutrino energy.](image_url)

![Probability distribution for $\nu_\mu \rightarrow \nu_\nu$ transitions.](image_url)

\begin{align*}
\Delta m^2_{21} &= 7.59 \times 10^{-5} \text{ eV}^2 \\
\Delta m^2_{32} &= 2.42 \times 10^{-3} \text{ eV}^2 \\
\sin^2(2\theta_{12}) &= 0.861 \\
\sin^2(2\theta_{13}) &= 0.098 \\
\sin^2(2\theta_{23}) &= 0.490 \\
\Delta CP &= 0^\circ
\end{align*}
Neutrinos from different baselines and energies

- Baselines vary between ~ 20 km to ~ 12760 km

Large volume detectors needed for large statistics

$\sim 10^4 \, \nu_\mu$ expected per year at analysis level in DeepCore
• Without DeepCore:
 78 strings,
 125 m string spacing,
 17 m module z-spacing

• Optimized for (very)
 High Energy neutrinos
IceCube-DeepCore

- 78 strings, 125 m string spacing
- 17 m modules z-spacing
- 8 strings, 40-75 m string spacing
- 7 m modules z-spacing
Measurement strategy

- Huge background from atmospheric μ
 - Use IC as veto to reject atm μ events
 - Same as done for ν_{μ} disappearance analysis
 - see J. Hignight’s talk
- Reconstruct ν energy and direction
 - oscillation distance (L) given by zenith

- Separate ν events with clear muons from rest
 - only $\sim18\%$ of τ decay have μ
 - ν_{μ} CC is main background to analysis
- Cannot currently separate different types of “cascade”

\[\begin{array}{ccccccc}
0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
CC & \mu\nu & CC & e\nu & CC & \tau\nu & NC
\end{array} \]

\[\begin{array}{ccccccc}
0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \\
Fraction of events identified as cascade
\end{array} \]

\[\begin{array}{ccccccc}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & \text{True } \nu \text{ energy (GeV)}
\end{array} \]
What is the signal in IceCube-DeepCore?

- The oscillation formalism does not relate to how the ν interacts
 - in that sense, ν_τ CC and NC are both signal
- But, uncertainties on the x-sec would affect more ν_τ CC rate
 - in that case using signal as only ν_τ CC would simplify interpretation

- Currently both ν_τ CC and NC considered signal.
 - In future plan to present results in both scenarios
What is the signal in IceCube-DeepCore?

- But fit is not done in L/E, but in $E \times \cos \theta_z$
 - Most signal in cascade channel
 - Pattern in $E \times \cos \theta_z$ helps reduce impact of systematics

Cascade-ID

![Cascade-ID plot]

Expected number of events/year vs. cos(Zen) for different neutrino flavors.

DeepCore

Livetime: 1 year

Preliminary
Systematic errors and fitting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gaussian prior</th>
<th>prior in fit?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔM^2</td>
<td>$(2.42 \pm 0.10) \cdot 10^{-3} \text{eV}^2$</td>
<td>Yes</td>
</tr>
<tr>
<td>$\sin^2(\theta_{23})$</td>
<td>0.490 ± 0.055</td>
<td>Yes</td>
</tr>
<tr>
<td>ν overall normalization</td>
<td>±15%</td>
<td>No</td>
</tr>
<tr>
<td>Atmo. μ normalization</td>
<td>$1.34 \pm 20%$</td>
<td>No</td>
</tr>
<tr>
<td>ν_e/ν_μ flux normalization</td>
<td>±2%</td>
<td>Yes</td>
</tr>
<tr>
<td>$\bar{\nu}/\nu$ flux normalization</td>
<td>±15%</td>
<td>Yes</td>
</tr>
<tr>
<td>Spectral index of ν_μ flux</td>
<td>±0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>DOM efficiency</td>
<td>±10%</td>
<td>Yes</td>
</tr>
<tr>
<td>Hole Ice</td>
<td>$(0.02 \pm 0.01) \text{cm}^{-1}$</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Fit is done using Gaussian priors for most systematic errors and flat prior for ν_τ normalization (between 0.0 and 2.0)
 - in future will use more complicated prior for oscillation parameters
- For estimation of sensitivity, fit performed on several pseudo data generated from MC
 - When fit without prior, Gaussian prior is used for sampling of parameter used for pseudo-data creation.
- While main systematics already accounted for, still evaluating impact of other systematics
Reconstructed ν_τ normalization – 1 year

- Reasonable separation between default 3-flavour oscillation and no ν_τ appearance with 1 year DeepCore data
- Significance to exclude no ν_τ appearance: $\sim 6.5\sigma$ (Gaus approx)
Sensitivity for ν_τ normalization – “3 years”

- Significance to exclude no ν_τ appearance: $\sim 9.4\sigma$ (Gaus approx)
- 25% precision on ν_τ normalization
IceCube-DeepCore-PINGU

- 78 strings, 125 m string spacing
- 17 m modules z-spacing
- 8 strings, 75 m string spacing
- 7 m modules z-spacing
- 40 strings, 22 m string spacing
- 3 m modules z-spacing
 - all optical modules in clearest ice

For more on PINGU analysis see T. DeYoung’s talk
\(\nu_\tau \) appearance in PINGU

- Follow same procedure as for DeepCore
 - Denser array \(\Rightarrow \) improved reconstruction and PID
- \(\nu_\tau \) composes larger part of final sample than in DeepCore

Cascade-ID

PINGU

- True \(E_\nu \in [1, 80] \) GeV

\(\nu_e \)
\(\nu_\mu \)
\(\nu_\tau \)

E_\nu (GeV)

PINGU
(livetime: 1 year)

N/\(N_{\nu_e+\nu_\mu} \) (all flavours)
ν_τ appearance in PINGU – expected sensitivity

- 5σ exclusion of no ν_τ appearance after 1 month of data
- 10% precision in the ν_τ normalization after 6 months
Summary and outlook

- Atmospheric ν various baselines and energies permit measurement of ν_τ appearance

- IceCube-DeepCore should currently be able to statistically measure it with high significance
 - Progress being made towards this measurement
 - Expected 25% precision on normalization with already taken data

- PINGU should further increase sensitivity to ν_τ appearance
 - < 10% precision on normalization after 1 year of data
Backup slides
Event display at PINGU

Interaction Type: no interaction

Primaries:
- Type: NuMuBar
 Energy: $1.78 \times 10^1 \text{GeV}$
- Muon
- Type: MuPlus
 Energy: $1.48 \times 10^1 \text{GeV}$
- Cascade
 Type: P0
 Energy: $1.18 \times 10^0 \text{GeV}$

Interaction Type: no interaction

Primaries:
- Type: NuEBar
 Energy: $4.09 \times 10^1 \text{GeV}$
- Cascade
 Type: EPlus
 Energy: $3.03 \times 10^1 \text{GeV}$
Reconstruction resolutions

coszen Resolutions

energy Resolutions

![Graphs showing coszen and energy resolutions for PINGU, DeepCore, PINGU νμ, and PINGU νe.](image)

- For PINGU, σE/E ~ 20% and σθ ~ 10 - 20 deg.
- Effective Area
- Event Reconstruction
- Physics goals for PINGU
 - Hypothesis: all events are
 - Interaction (CC vs. NC)
 - Calculating PINGU's Sensitivity to the Neutrino Mass Hierarchy
- Trained distribution agrees well with data in DeepCore
- New calibration methods for IceCube, DeepCore and PINGU
- Reduced time for 10% Q (ns)
 - Early hit charge (pe)
 - Reduced time for 10% Q (ns)

References:
- •
- •
- •
- •
- •
- •
- •
- •

Note: Preliminary results.
PINGU Particle identification

![Graph showing rate vs. MVA score for different types of events: Cascade-like and Track-like. The graph also shows the distribution of neutrino types: ν_e, ν_μ, and ν_τ.](image)