

Searches for RPV SUSY via LQD couplings at CMS Experiment

Sadia Khalil Kansas State University Aug, 4th, 2015 DPF Meeting, Ann Arbor, MI

Outline

- Introduction
- Details of selected analyses with opposite charge dilepton + jets events (EXO-12-032, EXO-14-013)
 - Event Selections
 - Background Estimation
 - Systematic Uncertainties
 - Results
- Conclusion

Sadia Khalil

Sadia Khalil

3

DPF 2015, Ann Arbor, MI, USA

DPF 2015, Ann Arbor, MI, USA

RPV Stop Searches in di-tau+jets

4

- Assuming the coupling λ'_{333} , and λ'_{3jk} (j,k≤2) is non-zero
- λ'_{333} : trilinear RPV operator
 - Reinterpretation of LQ3, as it has the same final states
- λ'_{3jk} : $\tilde{t} \to \tilde{\chi}^{\pm}b \to \tilde{\nu}_{\tau}^{*}\tau^{\pm}b$ $(\tilde{\nu}_{\tau}^{*} \to jj)\tau^{\pm}b$ • Selection
 - Require one τ_{I} and one τ_{h}
 - e, μ : p_T > 30 GeV and veto 2nd lepton
 - $\tau_h: p_T > 50 \text{ GeV}$
 - $M(\tau_h, j) > 250 \text{ GeV for } \lambda'_{333}$
 - \geq 2 (\geq 5 jets), \geq 1 b-jet for $\lambda'_{333}(\lambda'_{3jk})$
- Strategy
 - $S_T = p_T(I) + p_T(\tau_h) + \Sigma_{j \ge 2(5)} p_T(j)$

Sadia Khalil

EXO-12-032

b

Backgrounds

EX	0-	12	2-0	32)

Irreducible tī+jets	Data-driven " $e\mu$ " method	($S_{\mathbf{T}}$ shape from MC)
Fake $ au_{had}$	Data-driven fake-rate method	($S_{ m T}$ shape from MC)
QCD (for $e au_{had}$ channel)	Data-driven "SS OS" method	
Other prompt-prompt	MC	

- **tt+jets:** All selections except τ_h . The eµ events are scaled by the relative difference of the selection efficiencies between the I, τ_h and eµ, which already corrected using data
- Fake τ_h : Use Z+jets, Z $\rightarrow \mu\mu$: $M_{\mu\mu}$ > 50 GeV and event requires $\geq 1\tau_h$. MisID probability is calculated as fraction of τ_h passing isolation criteria (as a function of pt), where background yield is calculated when τ_h failed the isolation. The anit-isolated events are then weighted by the misID probability
- QCD: Appears only in e τ_h . Use data with e and τ_h having same electric charge

	$\mu \tau_{\rm h}$ Channel	eτ _h Channel
t ī (irreducible)	66.7 ± 12.6	105.6 ± 18.1
Reducible	117.3 ± 18.9	147.8 ± 33.0
$Z(\ell\ell/\tau\tau)$ +jets	$7.5 \pm 4.6 \pm 0.2$	$21.4 \pm 7.4 \pm 4.9$
Single-t	$17.3 \pm 2.8 \pm 4.7$	$16.0 \pm 2.8 \pm 4.4$
VV	$2.6\pm0.5\pm0.8$	$4.1\pm0.6\pm1.3$
Total Bkg.	$211.4 \pm 5.4 \pm 23.4$	$294.9 \pm 7.9 \pm 39.1$
Observed	216	289

Systematic Uncertainties

EXO-12-032

Source	Uncertainty (%)
Luminosity	2.6
Lepton Trigger+Efficiency	2
τ _h	6
b-tagging efficiency	4-10
Irreducible bkg normalizaion	19-22
Other major bkg normalization	16-24
Jet Energy Scale	2-4
Jet Energy Resolution	5-10
ISR/FSR modeling for signal	4
MC Stats on small bkg	20-50
τ _h	3
τ _h	10

Results

- Assuming the coupling λ'_{333}
 - exclude M(t[°]) < 740 GeV at 95% C.L assuming 100% BR of t[°] decay

- Assuming the coupling λ'_{3jk} (j,k≤2) is non-zero
 - exclude M(t[°]) < 850 GeV at 95% C.L assuming 100% BR of t[°] decay

EXO-12-032

RPV Stop Searches in dilepton+jets

• Assuming the coupling λ'_{ijk} (i,j,k \leq 2) is non-zero

EXO-14-013

<u>19.7 fb⁻¹ (8 Te</u>V)

 $\tilde{t} \to \tilde{\chi}^{\pm} b \to \tilde{\nu}^* \ell^{\pm} b$ $(\tilde{\nu}^* \to jj) \ell^{\pm} b$

- Final states involve two OS same flavor dileptons, with six jets
 - i=1: electrons, i=2: muons
 - j,k=1,2: light flavor jets (d,s)
- Selection:
 - $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$; $M_{\parallel} > 130$ GeV
 - \geq 5 jets, \geq 1 b-jet ;
 - Jet $p_T > 100$, 50, 30 GeV for 1st, 2nd, and $\ge 3^{rd}$ jets
 - MET < 100 GeV;
 - $S_T > 300 \text{ GeV}$

Study 10⁵ CMS ee + jets ti Preliminary Drell-Yan Single t Diboson M 900 GeV 10^{4} 0^{2} 0^{4} $0^$

Analysis Strategy

Discriminant: N_{Jets} and S_T

- Optimize S_T using S/sqrt(S+B) for each stop mass hypothesis •
- Perform independently for all N_{iets} •
- min Count number of events in jet bin after S_T selection •

Mass (GeV)	Njets	$S_{\rm T}^{\rm min}$ (GeV)	Data	Expected background	Signal
300	5	475	43	46.3 ± 7.2	696.0 ± 52.4
300	6	475	10	11.3 ± 3.8	450.2 ± 42.5
300	≥ 7	325	4	4.1 ± 1.9	261.0 ± 32.6
400	5	525	39	36.8 ± 7.2	266.4 ± 13.5
400	6	525	10	10.8 ± 3.9	280.9 ± 14.1
400	≥ 7	325	4	4.1 ± 1.9	222.6 ± 12.4
500	5	725	16	16.0 ± 3.8	81.1 ± 4.0
500	6	675	9	7.3 ± 3.2	114.4 ± 4.8
500	≥ 7	675	3	3.1 ± 1.6	101.8 ± 4.5
600	5	875	5	5.2 ± 1.5	23.6 ± 1.1
600	6	825	5	4.6 ± 1.6	36.0 ± 1.3
600	≥ 7	825	2	2.3 ± 1.0	44.2 ± 1.5
700	5	1075	2	1.3 ± 0.4	7.7 ± 0.4
700	6	975) 4	2.4 ± 0.8	13.2 ± 0.5
700	≥7	975	⁄ 2	1.0 ± 0.5	17.8 ± 0.5
800	5	1175	0	0.9 ± 0.3	2.9 ± 0.2
800	6	1175	2	0.8 ± 0.3	4.5 ± 0.2
800	≥ 7	1125	\ 1	0.4 ± 0.2	7.3 ± 0.2
900	5	1475	>0	0.1 ± 0.1	0.9 ± 0.1
900	6	1325	0	0.4 ± 0.2	1.8 ± 0.1
900	_≥7	1175	1	0.4 ± 0.2	2.9 ± 0.1
1000	5	1575	0	0.1 ± 0.1	0.4 ± 0.1
1000	6	1525	0	< 0.1	0.6 ± 0.1
1000	≥7	1425	0	0.2 ± 0.2	1.2 ± 0.1

450.2 ± 42.5	300	6	325	13	9.0 ± 3.3
261.0 ± 32.6	300	≥7	325	4	2.9 ± 1.7
266.4 ± 13.5	400	5	525	27	28.7 ± 5.6
280.9 ± 14.1	400	6	325	13	9.0 ± 3.3
222.6 ± 12.4	400	≥ 7	325	4	2.9 ± 1.7
81.1 ± 4.0	500	5	725	12	14.1 ± 3.3
114.4 ± 4.8	500	6	675	9	5.3 ± 2.5
101.8 ± 4.5	500	≥ 7	675	4	2.2 ± 1.4
23.6 ± 1.1	600	5	925	1	3.4 ± 1.1
36.0 ± 1.3	600	6	875	3	2.7 ± 1.0
44.2 ± 1.5	600	≥7	825	4	1.8 ± 0.9
7.7 ± 0.4	700	5	1025	1	1.6 ± 0.5
13.2 ± 0.5	700	6	975) 2	1.3 ± 0.5
17.8 ± 0.5	700	≥7	975	2	1.1 ± 0.6
2.9 ± 0.2	800	5	1225		0.4 ± 0.2
4.5 ± 0.2	800	6	1175	0	0.4 ± 0.2
7.3 ± 0.2	800	≥7	1075	2	0.7 ± 0.4
0.9 ± 0.1	900	5	1325	∖_1	0.2 ± 0.1
1.8 ± 0.1	900	6	1375	0	0.2 ± 0.1
2.9 ± 0.1	900	<u>≥</u> 7	1375	1	0.2 ± 0.1
0.4 ± 0.1	1000	5	1475	0	0.1 ± 0.1
0.6 ± 0.1	1000	6	1425	0	0.2 ± 0.1
1.2 ± 0.1	1000	≥7	1525	0	0.1 ± 0.1

Mass (GeV)

300

µµ+jets

ee+jets

Data

39

Expected background

 38.1 ± 5.9

 $S_{\rm T}^{\rm min}$ (GeV)

325

Njets

Signal

 621.8 ± 49.1

 442.0 ± 41.1

 266.2 ± 32.9

 256.3 ± 13.6

 245.5 ± 13.1

 180.5 ± 11.5

 69.2 ± 3.3

 88.1 ± 3.8

 89.7 ± 3.8

 19.0 ± 0.9

 28.8 ± 1.2

 38.7 ± 1.3

 7.1 ± 0.3

 10.5 ± 0.4

 14.8 ± 0.5

 2.7 ± 0.2

 3.6 ± 0.2 5.7 ± 0.2

 1.0 ± 0.1

 1.5 ± 0.1

 2.4 ± 0.1

 0.3 ± 0.1

 0.6 ± 0.1 1.0 ± 0.1

Analysis Strategy

EXO-14-013

The S_T distribution for each t⁻ mass is different, hence require optimization
 Optimize S_T^{min} using S/sqrt(S+B) for each stop mass hypothesis and independently for all N_{iets}

• S_T distributions in 5-, 6-, and more than 7-jet bins

Backgrounds

- Corrections factors for the largest backgrounds are obtained from data EXO-14-013
 - ttbar+jets : e[±]µ[∓] region is signal free
 - DY: Shape from 0-btag region and normalization by fitting the Z mass peak

Selection	Leptons	Njets	N _{b-tags}
Search	$e^{\pm}e^{\mp}(\mu^{\pm}\mu^{\mp})$ $M_{\ell\ell} > 130 \text{ GeV}$	≥5	≥ 1
tī	$e^{\pm}\mu^{\mp}$	\geq 5	≥ 1
DY normalization	$e^{\pm}e^{\mp}(\mu^{\pm}\mu^{\mp}), 50 < M_{\ell\ell} < 130 \text{ GeV}$	≥ 2	≥ 1
DY shape	$e^{\pm}e^{\mp}(\mu^{\pm}\mu^{\mp}), 50 < M_{\ell\ell} < 130 \text{ GeV}$	≥ 2	0

Top Background

DY Background

Scan in $S_{T^{min}}$ bin of 25 GeV [300 - 775 GeV]

Replace ttbar+jets histogram with a polynomial, such that signal is absorbed as a non-peaking dist. and gives an unbiased DY SF

Use expected normalization for diboson+single top backgrounds
 DPF 2015, Ann Arbor, MI, USA
 11
 DPF 2015, Ann Arbor, MI, USA

Systematic Uncertainties

EXO-14-013

Parameter type	Source	Uncertainty $(\%)$
	$t\bar{t}$ +jets	10-50
	Drell-Yan	50-100
Background Normalization	Diboson	30
	Single top	30
	MC statistics	10-30
	Jet energy scale	5
	b-tagging scale factor	1-3
	Luminosity	2.6
	Lepton id/reco	3
Signal Efficiency	Electron energy scale	2
	Muon momentum scale	0.9
	Trigger	1
	Lepton isolation	5
	MC statistics	2-7

RPV SUSY Searches in dilepton+jets EXO-14-013

Result

- Assuming 100% BR of $\tilde{t} \to \tilde{\chi}^{\pm}b \to jj\ell^{\pm}b$ and non-zero λ'_{ijk} (i,j,k≤2) we exclude the t[~] mass below 1000 (890) GeV for the muon (electron) at 95% CL
- The expected limits are 970 (950) GeV for the muon (electron) channel

Conclusion

- CMS has searched for many of the RPV models at 8 TeV, for non-zero couplings of λ''_{ijk} , λ'_{ijk} , λ_{ijk} , corresponding to LLE, LQD, UDD terms.
- I summarized results for the searches for λ'_{ijk} (i,j,k≤3), in oppositely charged dilepton + multiple jets and no MET events
- These searches are currently active with LHC Run2 data at 13 TeV

Thank you

Additional Material

DY background

- Procedure
 - Fit the dilepton mass in control region between 50-130 GeV in I[±]I[∓] sample

Component	Fix parameter	Floating paramter
DY	Shape from 0 b-tag data	DY normalization (N
Diboson	Shape and normalization from MC	_
Single Top	Shape and normalization from MC	_
ttbar+jets	-	polynomial slope and normalization
Signal	-	polynomial slope and normalization

- Correct DY MC in search region with $SF=N_{DY}^{fit}/N_{DY}^{MC}$ in N_{jet} bins
- Performed two tests:
 - Self consistency test: Does polynomial describes the top background ?
 - Signal Injection test: Inject $M_{t_{\sim}}$ = 300 GeV and check if polynomial can predict the top background correctly

DY background

• Self consistency test:

Fit inputs: ee+jets					Fit results: ee+jets					
N _{Jets}	N _{DY}	N_{VV}	N _t	N _{tī}	Nsig	N _{DY}	N_{VV}	<i>N</i> _t	N _{pol}	p1
3	291	27	6	83	0	291 ± 9	27	6	83 ± 3	0.7 ± 0.0
4	125	16	1	39	0	123 ± 5	16	1	41 ± 2	0.7 ± 0.0
5	34	5	0	13	0	34 ± 2	5	0	13 ± 1	0.6 ± 0.1
≥ 6	10	2	0	5	0	9 ± 1	2	0	5 ± 1	0.6 ± 0.2

Table 12: Inputs and results for fit to combination of background MC samples.

Signal Injection test:

Fit inputs: ee+jets					Fit results: ee+jets					
N _{Jets}	N _{DY}	N_{VV}	N _t	$N_{t\bar{t}}$	Nsig	N _{DY}	N _{VV}	Nt	N _{pol}	p1
3	291	27	6	83	53	285 ± 8	27	6	150 ± 6	0.6 ± 0.0
4	125	16	1	39	189	121 ± 4	16	1	247 ± 12	0.5 ± 0.0
5	34	5 <	0	13	218	35 ± 2	5	0	240 ± 17	0.7 ± 0.1
≥ 6	10	2	0	5)	230	11 ± 2	2	0	233 ± 19	0.7 ± 0.1

Table 13: Input and results for fit to combination of background MC samples and the signal for 300 GeV stop mass.