

Cosmic Ray Background

- Mu2e will search for a neutrino-less muon to an electron conversion
 - Total expected background is 0.4 events over 3 years
- Mu2e expects 1 signal-like event per day induced by cosmic rays
- Cosmic rays can interact with detector components producing 105 MeV electron
- To achieve experiment's designed sensitivity, cosmic ray veto detection efficiency is required to be > 99.99%

Cosmic Ray Veto

- Cosmic Ray Veto(CRV) consists of 4-layer scintillating 5x2 cm² counters, readout though wavelength-shifting fibers by 2x2 mm² SiPMs
- We require hit coincidence in at least 3 out of 4 layers localized in time and space for a cosmic ray muon track
- We veto 125 ns from the signal window after each coincidence in the CRV

CRV details:

- Area: 323 m²
- 82 modules
- 55 tons of counters
- 50 km of fibers
- 18,944 SiPMs

Mu2e apparatus

- (1) Pulsed (1695 ns) 8 GeV proton beam strikes production target to produce π^-
 - Graded B-field reflects π toward the transport solenoid
- (2) Trasport solenoid:
 - Transports $\pi^{\text{--}}/\mu^{\text{--}}$, selects particle's momentum and charge, avoids direct line of sight
- (3) Muons stop on Al target. Wait for 700 ns to avoid prompt backgrounds
 - Conversion electron momentum and energy are measured in the tracker and calorimeter

Neutrons and gammas at CRV

- Neutron and gamma fluxes from beam interactions cause challenges to CRV
 - Make hits in the CRV, faking cosmic ray muons and increasing the dead-time
- Largest source of neutrons originate from Production Solenoid after beam flash
 - ▶ This source is prompt. It is reduced after 700 ns
- Neutrons get thermalized, captured and produce delayed gammas
 - Other sources of gammas: electrons brems from μ-decays
- Source of delayed neutrons originate from μ-captures on collimators, beam-line and stopping target

Mu2e geometry in the simulation

Sources of neutrons and gammas at CRV

CRV shielding

- CRV needs to be shielded from the beam induced radiation backgrounds
- CRV is mounted on 1 yd of concrete walls
- T-shaped concrete blocks are designed to avoid direct cracks
- Region close to PS/TS is enhanced with heavy barite enriched concrete

Dead-time estimate

- Neutron and gamma can produce 3/4 veto coincidence:
 - Accidental, semi-correlated, full-correlated coincidences are produced by 3, 2 and 1 incoming particles respectively
- First dead-time estimate was performed using G4beamline
 - It allowed us to quickly adjust the CRV and shielding design
 - Original CRV design: 3-layers of 10x1 cm² counters

G4beamline: Simulations

- G4beamline simulation is performed in the following steps
- Stage 1: Simulate POT and record all particles on the source plane
- Stage 2: Resample from the source plane
- The result of stage 2: neutron and gamma fluxes at the CRV
- For each geometry design iteration, we simulate 1E6 (1E9) POT on the 1st (2nd) stage

G4beamline: Dead-time estimate

Estimate the neutron/gamma fluxes at the CRV

Estimate the neutron/gamma efficiency to produce n-fold coincidence above 0.5 MeV

Produce n-fold hit rates at the CRV

Calculate the dead-time

Accidental

Semi-correlated

Fully-correlated

$$f_{v} = \sum_{i=1}^{N_{cl}} 3n_{1i}^{3} \Delta t_{v} N_{1} \Delta t_{c}^{2} = 3\Delta t_{v} N_{1} \Delta t_{c}^{2} \sum_{i=1}^{N_{cl}} n_{1i}^{3}$$

$$f_{v} = \sum_{i=1}^{N_{cl}} 2n_{12i}n_{2i}\Delta t_{v}N_{2}\Delta t_{c} = 2\Delta t_{v}N_{2}\Delta t_{c}\sum_{i=1}^{N_{cl}} n_{12i}n_{2i}$$

$$f_{v} = \sum_{i=1}^{N_{cl}} n_{3i} \Delta t_{v}$$
 $= \Delta t_{v} \sum_{i=1}^{N_{cl}} n_{3i}$

- Total dead-time was estimated to be 4%
- The number is sensitive to hit time resolution, effective energy threshold...

Mu2e simulation framework

- 1: Use multi-stage simulation approach in Mu2e simulation framework
 - ▶ 1: Simulate POT and record all the products at the x-z plane
 - ▶ 2: Resample all particles except muons from the x-z plane
 - ▶ 3: Propagate muons from x-z plane until they stop
 - ▶ 4: Resample daughters from the muon stops
 - ▶ 5: Mix (2) and (4) to form micro-bunches

Mu2e framework: Dead-time estimate

- CRV dead-time in the Mu2e simulation framework is estimated
 - Simulation of light production, propagation, SiPM response, digitization and reconstruction have been recently implemented
 - Shielding geometry has been recently refined to the best of our knowledge
- Simplified version of a coincidence finder algorithm has been implemented
 - Consider reconstructed pulses above 10 PE threshold
 - ▶ Localized in time (15 ns) and space (30 cm)
- The total dead-time is estimated to be 12%

Fluxes comparison

- We cross-check the neutron and gamma fluxes between G4beamline and Mu2e framework
- The agreement is good
- Both framework use G4 under the hood
- We're currently working to compare the fluxes with MARS

Event display

- Event display has been developed to visualize coincidences
 - Each box corresponds to a counter divided into for quadrants (SiPMs)
 - Each SiPM hit is color coded in time
- Large number of CRV hits from neutrons and gammas in a single event
- Small fraction of hits are localized in space and time to form coincidence
- Future improvements to coincidence finder algorithm will further reduce the number of coincidences

Summary

- Cosmic ray veto is an essential component for the Mu2e experiment
 - ▶ Suppress the background by 4 orders of magnitude
- CRV design is challenging
 - ▶ Maintain 99.99% cosmic ray veto efficiency over 3 years
 - Operate in high radiation environment, and produce small deadtime for the experiment
- CRV and shielding design has been modified to reduce the impact
 - Further optimization is in progress
- First Mu2e framework simulation results show the dead-time of 12%
 - ▶ Expect to reduce the number with further optimizations
- Details in Mu2e <u>TDR</u>