

Update on $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via initial state radiation at Belle

XiaoLong Wang

Virginia Tech & Belle Collaboration

Meeting of the Division of Particles & Fields of the American Physical Society

U. of Michigan, August 7, 2015

Introduction

- Potential model works very well for charmonium states below DD threshold.
- A lot of charmonum(-like) states above $D\overline{D}$ threshold were observed in the past decade.
- XYZ particles Quarkonium-like states with many exotic properties! What is their nature? (QWG, Eur. Phy. J. C71, 1534(2011))

Eichten et al, Rev. Mod. Phys.80,1161(2008)

Example potential from Barnes, Godfrey, Swanson: $V_0^{(c\bar{c})}(r) = -\frac{4}{3} \frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2} \tilde{\delta}_{\sigma}(r)\vec{S}_c \cdot \vec{S}_{\bar{c}}$ (Coulomb + Confinement + Contact) $V_{\text{spin-dep}} = \frac{1}{m_c^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_s}{r^3} T \right]$ (Spin-Orbit + Tensor) PRD72, 054026 (2005)

The charmonium(-like) states observed via ISR: Y(4008), Y(4260), Y(4360), Y(4660), X(4630), $\psi(4040), \psi(4160), \psi(4415), \dots$

KEKB and Belle

Physics targets:

CP Violation, Spectroscopy, au Physics, New Physics beyond Stand Model,

• • •

Belle data samples:

BaBar searched for *Y*(4260) in $\pi^+\pi^-\psi(2S)$ final states.

BaBar: B. Aubert et al., PRL98, 212001(2007).

Update on $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR

- Y(4360) was confirmed and Y(4660) was discovered at Belle.
- Y(4660) has been confirmed by BaBar:
 - The charmonium-like state with highest mass but narrowest width.
 - Are Y(4660) and Y(4630) the same?

- Belle has about 1 ab⁻¹ data after 2010, and efficiency increases after data reprocessed.
- Many more signal events are expected!
- Search for possible intermediate state(s) in *Y* decays.

- $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ mode: selection criteria optimized. $M_{\psi(2S)} = M_{\pi^+ \pi^- \ell^+ \ell^-} - M_{\ell^+ \ell^-} + m_{J/\psi}$
- $\psi(2S) \rightarrow \mu^+ \mu^-$ mode: a new mode.
- $\psi(2S) \rightarrow e^+e^-$ mode is not used due to high background level.
- Mass resolution:

 $\sigma_{\pi^+\pi^- J/\psi} = 2.7 \pm 0.2 \text{ MeV}/c^2, \sigma_{\mu^+\mu^-} = 13.8 \pm 2.1 \text{ MeV}/c^2.$

ISR characteristics

- Missing mass: signal of γ_{ISR}. −2 < M²_{rec}(π⁺π⁻ψ(2S)) < 2 (GeV/c²)² is required.
- Visible energy: Only 10-20% γ_{ISR} can be detected.
- Angular distribution: γ_{ISR} highly forward/backward.

$M_{\pi^+\pi^-}$ vs. $M_{\pi^+\pi^-\psi(2S)}$

After the selection criteria, we get pure $\pi^+\pi^-\psi(2S)$ events.

• Clear clusters!

- **Purity:** 245 candidate events with a purity of 96% from $\pi^+\pi^- J/\psi$ mode, and 118 events with a purity of 60% from $\mu^+\mu^-$ mode.
- $M_{\pi^+\pi^-}$: tends to the phase space boundary; $f_0(980)$ belts.

PRD91, 112007(2015)

$M_{\pi^+\pi^-}$ projections in $\pi^+\pi^- J/\psi$

It's not so clean in $\mu^+\mu^-$ mode, due to the width of sidebands: Mass resolution: $\sigma_{\pi^+\pi^- J/\psi} = 2.7 \pm 0.2 \text{ MeV}/c^2$, $\sigma_{\mu^+\mu^-} = 13.8 \pm 2.1 \text{ MeV}/c^2$.

- Dots: data; Blank hist: MC simulations; Shaded hist: bkg from $\psi(2S)$ sidebands.
- (a) with $4.0 < M_{\pi^+\pi^-\psi(2S)} < 5.5 \text{ GeV}/c^2$.
- Y(4360): 4.0 < $M_{\pi^+\pi^-\psi(2S)}$ < 4.5 GeV/ c^2 , looks like $f_0(500)$
- Y(4660): 4.5 < $M_{\pi^+\pi^-\psi(2S)}$ < 4.9 GeV/ c^2 , $f_0(980)$ determined by BaBar.

MC simulation with an incoherent sum of the $f_0(500)$ and $f_0(980)$.

Fit of $M_{\pi^+\pi^-\psi(2S)}$ spectrum with two resonances

Unbinned simultaneous maximum likelihood fit for Y(4360) and Y(4660): $Amp = BW_1 + e^{i\phi} \cdot BW_2$.

Parameters	Solution I	Solution II		
$M_{Y(4360)} (MeV/c^2)$	$4347\pm 6\pm 3$			
Γ _{Y(4360)} (MeV)	$103\pm9\pm5$			
$\mathcal{B} \cdot \Gamma^{e^+e^-}_{Y(4360)}$ (eV)	$9.2\pm0.6\pm0.6$	$10.9\pm0.6\pm0.7$		
$M_{Y(4660)}$ (MeV/ c^2)	$4652\pm10\pm11$			
Γ _{Y(4660)} (MeV)	$68\pm11\pm5$			
$\mathcal{B} \cdot \Gamma^{e^+e^-}_{Y(4660)}$ (eV)	$2.0\pm0.3\pm0.2$	$8.1\pm1.1\pm1.0$		
φ́ (°)	$32\pm18\pm20$	$272\pm8\pm7$		
$\sqrt{\frac{2}{ndf}} = 18.7/21$				

- Consistent with previous measurement
- No obvious signal above Y(4660).
- Some events accumulate at Y(4260), especially the $\pi^+\pi^- J/\psi$ mode.
- If Y(4260) is included in the fit, ...

Fit of $M_{\pi^+\pi^-\psi(2S)}$ spectrum with three resonances

Unbinned simultaneous maximum likelihood fit for Y(4260), Y(4360) and Y(4660). $Amp = BW_1 + e^{i\phi_1} \cdot BW_2 + e^{i\phi_2} \cdot BW_3$.

Significance of Y(4260) is 2.4 σ —low, but affects Y(4360) and Y(4660) masses and widths.

FOUR solutions with equally good fit quality, which is $\chi^2/ndf = 14.8/19$.

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

DPF2015

$\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ measurement

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ cross section is calculated with

where *i* indicates the mass bin and *j* indicates the $\psi(2S)$ decay mode.

Other cross sections from ISR:

The $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ at Y(4260), $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ at Y(4360) and $\sigma(e^+e^- \rightarrow \eta J/\psi)$ at $\psi(4040)$ are almost the same!!! WHY?

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

σ[e⁺e⁻→ $\pi^{+}\pi^{-}\psi(2S)$] (pb)

Tetra-quark state candidate: Z_c

- $Z(4430)^{\pm}$ observed in $\pi^{\pm}\psi(2S)$ final states.
- *Z_c*(3900) observed in *Y*(4260) decay.
- Both *Z*(4430) and *Z_c*(3900) are candidates of tetra-quark states.
- Here are two *Ys*, and $\pi^{\pm}\psi(2S)$ final states.
- What can we get in Y(4360)/Y(4660) decays?

PRL100, 142001(2008)

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

Search for intermediate states in Y(4360) decays

- An excess at both $\pi^+\pi^- J/\psi$ and $\mu^+\mu^-$ modes, and both $M_{\pi^+\psi(2S)}$ and $M_{\pi^-\psi(2S)}$! A new Z_c at 4.05 GeV/ c^2 ?
- $M_{\pi^{\pm}\psi(2S)}$: sum of the $M_{\pi^{+}\psi(2S)}$ and $M_{\pi^{-}\psi(2S)}$

$Z_c(4050)?$

- An unbinned maximum-likelihood fit is performed simultaneously.
- $M_{\max}(\pi^{\pm}\psi(2S))$: the maximum of $M(\pi^{+}\psi(2S))$ and $M(\pi^{-}\psi(2S))$

- $M = (4054 \pm 3(\text{stat.}) \pm 1(\text{syst.})) \text{ MeV}/c^2$
- $\Gamma = (45 \pm 11(\text{stat.}) \pm 6(\text{syst.})) \text{ MeV}$
- The significance is 3.5σ .
- Bias between M_{max}[πψ(2S)] and M_{π±ψ(2S)} is corrected according to MC simulation.

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

Search for intermediate states in Y(4660) decays

We search for intermediate states in $\pi^{\pm}\psi(2S)$ final states in *Y*(4660) decays. No obvious excess found in the final states.

 $f_0(980)\psi(2S)$ dominates in Y(4660) decays.

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

DPF2015

- Belle updates the measurement on $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-\psi(2S)$ with 980 fb⁻¹ data.
- Resonance parameters of Y(4360) and Y(4660) are updated.
- Y(4260) → π⁺π⁻ψ(2S) is studied. The significance of Y(4260) is < 3σ, but it has significant affect on Y(4360) and Y(4660) parameters.
- Comparison between Y(4660) and X(4630):
 - X(4630) from $\Lambda_c^+ \Lambda_c^-$: $M = 4634_{-7-8}^{+8+5}$ MeV/ c^2 , $\Gamma = 92_{-24-21}^{+40+10}$ MeV.
 - Y(4660) from 2R fit: $M = 4652 \pm 10 \pm 11 \text{ MeV}/c^2$, $\Gamma = 68 \pm 11 \pm 5 \text{ MeV}$.
 - Y(4660) from 3R fit: $M = 4660 \pm 9 \pm 12 \text{ MeV}/c^2$, $\Gamma = 74 \pm 12 \pm 4 \text{ MeV}$.
- Evidence of a structure in M_{max}(π[±]ψ(2S)) in Y(4360) decays with significance of 3.5σ.

 $M = (4054 \pm 3(\text{stat.}) \pm 1(\text{syst.})) \text{ MeV}/c^2$; $\Gamma = (45 \pm 11(\text{stat.}) \pm 6(\text{syst.})) \text{ MeV}$

Thank you!

Back-up

 $e^+e^- \rightarrow \gamma_{\rm ISR} +$

 $e^+e^- \rightarrow D\overline{D}$ scanned by both BaBar and Belle. The results are consistent. Clear ψ (4040), ψ (4160) and ψ (4415). But no evidence for Y states in these channels.

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

DPF2015

18/21

$\eta J/\psi$ via ISR

Belle: Search for hadronic transition via emitting η . ($\eta \rightarrow \gamma \gamma / \pi^+ \pi^- \pi^0$)

• This is the first time to found ψ states in charmonium transition. (> 6.0 σ for ψ (4040); > 6.5 σ for ψ (4160).)

- Large $\mathcal{B}(\psi \rightarrow \eta J/\psi)!$ $\mathcal{B}(\psi(2S) \rightarrow \eta J/\psi) = (3.28 \pm 0.07)\%$
- Unlike π⁺π⁻ transition, no significant Y signal!!!

Belle: X. L. Wang et al., PRD87,051101(R)(2013).

Parameters	Solution I	Solution II			
$M_{\psi(4040)}$	4039	4039 (fixed)			
$\Gamma_{\psi(4040)}$	80 (80 (fixed)			
$\mathcal{B} \cdot \Gamma^{\psi(4040)}_{a^+a^-}$	$4.8 \pm 0.9 \pm 1.5$	$11.2 \pm 1.3 \pm 2.1$			
$M_{\psi(4160)}$	4153	4153 (fixed)			
$\Gamma_{\psi(4160)}$	103 (103 (fixed)			
$\mathcal{B} \cdot \Gamma_{a^+a^-}^{\psi(4160)}$	$4.0 \pm 0.8 \pm 1.4$	$13.8 \pm 1.3 \pm 2.1$			
ϕ	$336\pm12\pm14$	$251 \pm 4 \pm 7$			

$$\begin{split} & \Gamma_{e^+e^-}(\psi(4040)) = (0.86 \pm 0.07) \text{ keV from} \\ & \mathsf{PDG} \to \\ & \mathcal{B}(\psi(4040) \to \eta J/\psi) = \\ & (0.56 \pm 0.10 \pm 0.18)\% \text{ or } \mathcal{B}(\psi(4040) \to \\ & \eta J/\psi) = (1.30 \pm 0.15 \pm 0.26)\%. \\ & \Gamma_{e^+e^-}(\psi(4160)) = (0.83 \pm 0.07) \text{ keV from} \\ & \mathsf{PDG} \to \\ & \mathcal{B}(\psi(4160) \to \eta J/\psi) = \\ & (0.48 \pm 0.10 \pm 0.17)\% \text{ or } \mathcal{B}(\psi(4160) \to \\ & \eta J/\psi) = (1.66 \pm 0.16 \pm 0.29)\%. \end{split}$$

Other fit results on $M_{\pi^+\pi^-\psi(2S)}$

Published Belle results:

Parameters	Solution I	Solution II		
M(Y(4360))	4361	± 9 ± 9		
$\Gamma_{tot}(Y(4360))$	$74 \pm 15 \pm 10$			
$B\Gamma_{e^+e^-}(Y(4360))$	$10.4 \pm 1.7 \pm 1.5$	$11.8 \pm 1.8 \pm 1.4$		
M(Y(4660))	$4664 \pm 11 \pm 5$			
$\Gamma_{tot}(Y(4660))$	$48 \pm 15 \pm 3$			
$\mathcal{B}\Gamma_{e^+e^-}(Y(4660))$	$3.0 \pm 0.9 \pm 0.3$	$7.6 \pm 1.8 \pm 0.8$		
ϕ	$39\pm30\pm22$	$-79\pm17\pm20$		

Current BaBar results:

Parameters	First Solution Second Solution (constructive (destructive interference) interference)		
Mass Y(4360) (MeV/c ²)	4340 :	± 16 ± 9	
Width Y(4360) (MeV)	$94 \pm$	32 ± 13	
$\mathcal{B} \times \Gamma_{ee}(Y(4360))$ (eV)	$6.0\pm1.0\pm0.5$	$7.2 \pm 1.0 \pm 0.6$	
Mass $Y(4660)$ (MeV/c ²)	4669 =	$\pm 21 \pm 3$	
Width Y(4660) (MeV)	$104 \pm$	48 ± 10	
$\mathcal{B} \times \Gamma_{ee}(Y(4660))$ (eV)	$2.7\pm1.3\pm0.5$	$7.5 \pm 1.7 \pm 0.7$	
ϕ (°)	$12 \pm 27 \pm 4$	$-78 \pm 12 \pm 3$	

 $\pi^+\pi^- J/\psi$ only:

Fit with three resonance using $\pi^+\pi^- J/\psi$ mode

Parameters	Solution III	Solution IV	Solution V	Solution VI
$M_{Y(4260)}$	4259 (fixed)			
$\Gamma_{Y(4260)}$	134 (fixed)			
$\mathcal{B}[Y(4260) \to \pi^+\pi^-\psi(2S)] \cdot \Gamma^{e^+e^-}_{Y(4260)}$	$1.6\pm0.6\pm0.4$	$1.8\pm0.8\pm0.6$	$9.1\pm1.2\pm0.7$	$7.8\pm1.1\pm0.8$
$M_{Y(4360)}$	$4378 \pm 9 \pm 6$			
$\Gamma_{Y(4360)}$	$74 \pm 14 \pm 3$			
$\mathcal{B}[Y(4360) \to \pi^+\pi^-\psi(2S)] \cdot \Gamma^{e^+e^-}_{Y(4360)}$	$4.5\pm1.0\pm0.4$	$5.5\pm1.4\pm0.6$	$19.1 \pm 2.8 \pm 1.1$	$15.7 \pm 2.3 \pm 1.6$
$M_{Y(4660)}$	$4654 \pm 7 \pm 6$			
$\Gamma_{Y(4660)}$	$65 \pm 10 \pm 3$			
$\mathcal{B}[Y(4660) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4660)}^{e^+ e^-}$	$3.3\pm0.6\pm0.3$	$8.3\pm1.0\pm0.9$	$9.3\pm1.2\pm1.2$	$3.7\pm0.7\pm0.5$
ϕ_1	$282\pm25\pm24$	$270\pm27\pm28$	$130\pm5\pm3$	$142\pm 6\pm 7$
ϕ_2	$359 \pm 19 \pm 3$	$243 \pm 17 \pm 20$	$337\pm10\pm7$	$93\pm25\pm17$

DPF2015