EXPERIMENTAL OVERVIEW OF LEPTON NONUNIVERSALITY RESULTS AND PROSPECTS FROM B PHYSICS

DPF2015 Ann Arbor, MI
August 7, 2015

BRIAN HAMILTON
(on behalf of the LHCb Collaboration, including results from BaBar and Belle)
Lepton universality

- In SM, charged lepton flavors are **identical copies** of one another
 - Electroweak couplings are trivially equal for all three flavors by construction, only Higgs Yukawa couplings differentiate them
 - Amplitudes for processes involving e, μ, τ must all be identical up to effects depending on lepton mass (these effects can be large!)
 - Examples:
 - $\mathcal{B}(Z \to e^+e^-) = \mathcal{B}(Z \to \mu^+\mu^-) = \mathcal{B}(Z \to \tau^+\tau^-)$
 - $\mathcal{B}(\psi(2S) \to e^+e^-) = \mathcal{B}(\psi(2S) \to \mu^+\mu^-) = \mathcal{B}(\psi(2S) \to \tau^+\tau^-)/0.3885$

- Observation of violations of lepton universality would be a clear sign for physics beyond the standard model
 - Searches have been underway for violations in a number of different systems over the years
 - $Z \to \ell\ell, W \to \ell\nu, \tau \to \ell\nu\bar{\nu}, \pi \to \ell\nu, K \to \pi\ell\nu$, etc...
 - These provide very strong limits on nonuniversality in the SM electroweak interactions
Nonuniversality in NP

- Universality of the EW interactions does not necessarily imply universality of physics beyond the SM

- In particular, new physics preferentially coupling to the 3rd generation is usually less well-constrained, and can modify SM charged and neutral currents
 - Examples: A^0, H^\pm, new vectors coupled to SM Higgs doublet, leptoquarks

- Many models are strongly constrained by high-Pt searches, but can be tuned to evade these bounds while preserving their effect on heavy flavor searches

- LFU measurements in heavy flavor decay provide additional constraining power beyond light flavor and tau decay measurements
SM flavor structure and B physics basics

- Standard model flavor structure is described by the Cabibbo-Kobayashi-Maskawa mixing matrix.

- $V_{	ext{CKM}}$ hierarchical & nearly diagonal
 - Quark flavor transitions mixing different generations suppressed
 - 3rd generation especially "isolated"

- This leads to suppression of all tree-level b quark decay amplitudes
 - $|V_{cb}| \sim 0.04$
 - Makes B physics quite sensitive to NP generically misaligned with CKM

- Also leads to long b quark lifetime: $c\tau_B \sim 400\mu m! (= \text{about } 2x \text{charm lifetime})$
 - Very Important for hadron collider b tagging/reconstruction
 - Allows access to time-dependent phenomena
The players
Cast (1/3): BABAR/PEP-II

- 5-layer inner silicon strip tracker (SVT) plus 40-layer multicell drift chamber (DCH) in a 1.5 Tesla axial B field
- Dedicated Cherenkov PID system with quartz (n~1.474) radiator
 - PID at low p from dE/dx in both DCH and SVT
- CsI(Tl) crystal calorimeter
- Magnet flux return instrumented with RPCs and/or LSTs (depending on run period)
- Υ(4S) dataset: ≈ 470 × 10⁶ BB̅ pairs
Cast (2/3): Belle/KEKB

- 3/4-layer double-sided Silicon Tracker plus drift chamber
- Particle ID via measurements of time of flight and Cherenkov counter
- Excellent μ/K_L detection
- CsI(Tl) crystal calorimeter measures photon energies and assists in PID
- $\Upsilon(4S)$ dataset: $\approx 770 \times 10^6 B\bar{B}$ pairs
Single-arm spectrometer – $2 \leq \eta \leq 5$

- Single arm spectrometer optimized for beauty and charm physics at large η:
 - Trigger: $\sim 90\%$ efficient for dimuon channels, $\sim 30\%$ for all-hadronic
 - Tracking: $\sigma_{p/p} \sim 0.4\%$–0.6% (p from 5 GeV to 100 GeV), $\sigma_{\text{IP}} < 20 \mu m$
 - Vertexing: $\sigma_{\tau} \sim 45$ fs for $B_s \rightarrow J/\psi \phi$
 - PID: 97% μ ID for 1-3% $\pi \rightarrow \mu$ misID
 - Dipole magnet polarity periodically flipped to change the sign of many reconstruction asymmetries

- Instruments $\lesssim 3\%$ of the solid angle to cover 27% of the b-quark cross-section

- Run1 dataset: 3fb$^{-1}$, Run2 datataking has already begun with 50ns ramp

$b\bar{b}$ production dominantly at lower p_T:
- Parton CM frame highly boosted

At 7 TeV:
- $\sigma_{\text{inel}} \sim 70$ mb
- $\sigma_{c\bar{c}} \sim 6$ mb
- $\sigma_{b\bar{b}} \sim 280$ mb
b hadron production

B-factories: exploit clean BB production from Y(4S)
- Event shape discriminates $B\bar{B}$ vs $e^+e^- \rightarrow q\bar{q}$, $q = u, d, s, c$
- B mesons fly together, easy to cross-feed tracks between the two B mesons

LHCb: exploit clean B hadron decays
- At LHC energies, b hadrons fly macroscopic distances before decaying: use displaced vertex, large impact parameter of charged tracks, etc
- Production is $gg \rightarrow b\bar{b} + MPI + showering + ISR + \ldots$, very messy
Selected Results
B-factory measurements in $e^+e^- \rightarrow \tau^+\tau^-$ have been used to set tight limits on nonuniversality in the electroweak interaction.

τ^{\pm} decays to different charged leptons are calculable in the SM and naturally have negligible hadronic uncertainty. Thus:

$$\frac{\Gamma_{\tau \rightarrow e}}{\Gamma_{\mu \rightarrow e}} \propto \left(\frac{g_\tau}{g_\mu} \right)^2 = \frac{\tau_{\tau}}{\tau_{\mu}} \mathcal{B}(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau) \left(\frac{m_\mu}{m_\tau} \right)^5 \frac{f(m_e^2/m_\mu^2) r^\mu_{EW}}{f(m_e^2/m_\tau^2) r^\tau_{EW}}$$

$$\frac{\Gamma_{\tau \rightarrow \mu}}{\Gamma_{\mu \rightarrow e}} \propto \left(\frac{g_\tau}{g_\mu} \right)^2 = \frac{\tau_{\tau}}{\tau_{\mu}} \mathcal{B}(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau) \left(\frac{m_\mu}{m_\tau} \right)^5 \frac{f(m_e^2/m_\mu^2) r^\mu_{EW}}{f(m_e^2/m_\tau^2) r^\tau_{EW}}$$

$$\frac{\Gamma_{\tau \rightarrow e}}{\Gamma_{\tau \rightarrow \mu}} \propto \left(\frac{g_e}{g_\mu} \right)^2 = \mathcal{B}(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau) \left(\frac{m_\mu}{m_\tau} \right) \mathcal{B}(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau) \left(\frac{m_\mu}{m_\tau} \right) \frac{f(m_e^2/m_\mu^2)}{f(m_e^2/m_\tau^2)}$$

Waverage values with uncertainty of $\mathcal{O}(1.5 \times 10^{-3})$ have been obtained using information from B-factory measurements (esp. mass, lifetime)

PoS:KAON 054 2008 + HFAG 2014
EW penguin decays

PRL 113 (2014) 151601
PRD 86 (2012) 032012
PRL 103 (2009) 171801
Electroweak Penguins

- Penguin transitions stringently test the structure of the electroweak interaction
 - Loop structure with almost all major SM players at once: W, Z, γ, t
 - New particles connected to EWSB can appear and introduce q^2- or angular-dependent interference

- Excellent targets for both LHCb and B-factories
 - Dilepton in final state allows for clean event selection
 - Rich phenomenology with scalar and vector hadronic final states (K or K^*)
 - SM calculations become unreliable near $m(\ell\ell) = m(J/\psi), m(\psi(2S))$
 - (tree-level $b \rightarrow c\bar{c}s$ amplitudes, $c\bar{c}$ vacuum polarization, long distance effects...)

- Lepton universality test: standard lore is that
 $$R(K) \equiv \frac{\mathcal{B}(B \rightarrow K\mu^+\mu^-)}{\mathcal{B}(B \rightarrow Ke^+e^-)} = 1 \pm \mathcal{O}(10^{-3})$$ if only γ, Z participate
More on decay structure

- R(K) measurements can be performed anywhere in q^2
 - B factory measurements in high and low regions

- LHCb only measures below to $q^2 < 6$ GeV2
 - ψ resonances may dilute out NP contributions
 - high q^2 is very poorly modeled by naïve factorization

Cartoon taken from C. Linn’s FPCP 2015 slides

arXiv: 1406.0566
Analysis

\[B\bar{A}B\bar{A}R \]
(high q2)

PRD 86 (2012) 032012

\[LHCb \]
(left: electron triggered category)

PRL 113 (2014) 151601

- Analysis is (relatively) straightforward at all facilities
 - Fully reconstructed final state
 - LHCb: fit directly in reconstructed mass
 - B-factories: cut on \(E - E_{\text{beam}} \), fit in \(m_{ES,BC} \equiv \sqrt{\left(\frac{E_{CM}^*}{2} \right)^2 - (p_B^*)^2} \)
 - Belle additionally fits in \(\theta_B = \text{angle between B and beam in CM frame} \)
- Non-B background suppressed by multivariate classifiers in all experiments
Results

- Good compatibility between various experiments (by eye)
 - Belle: \[R_K = 1.03 \pm 0.19 \pm 0.06 \]
 - BaBar:
 \[
 R_K, q^2 < 8.12 \text{GeV}^2 = 0.74^{+0.40}_{-0.31} \pm 0.06
 \]
 \[
 R_K, q^2 > 10.11 \text{GeV}^2 = 1.43^{+0.65}_{-0.44} \pm 0.12
 \]
 - LHCb:
 \[
 R_K, q^2 < 6 \text{GeV}^2 = 0.745^{+0.090}_{-0.074} \pm 0.036
 \]

- More data clearly needed here to clarify the situation and set harder limits in this system

Related results:
- Belle:
 \[R_{K^*} = 0.83 \pm 0.17 \pm 0.08 \]
- BaBar:
 \[
 R_{K^*}, q^2 < 8.12 \text{GeV}^2 = 1.06^{+0.48}_{-0.33} \pm 0.08
 \]
 \[
 R_{K^*}, q^2 > 10.11 \text{GeV}^2 = 1.18^{+0.55}_{-0.37} \pm 0.11
 \]
- LHCb:
 analysis ongoing
Entertaining hypotheticals...

- Other similarly-sized deviations across $b \to s \mu \mu$ measurements:
 - Branching fractions consistently below expectations at low q^2
 - Angular variable P_5' in poor agreement

- Combined fit to $b \to s \mu \mu$ gives $P \approx 0.02$ for standard model
 - Preferred NP operators contribute left handed $b \to s$ FCNC [PRD 90 (2014) 054014]

- But high-scale dynamics that generates these must be $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariant!
 - Implies related charged currents... (arxiv 1412.7164, 1506.01705, 1506.02661)
 - Ok, half conspiracy theory, half convenient segue...
Semileptonic decays

PRL 109 (2012) 101802
PRD 88 (2013) 072012

arXiv: 1506.08614
Submitted to PRL

arXiv: 1507.03233
Submitted to PRD
Semileptonic B decays

- "Beta decay" of B hadrons – signature is lepton (μ or e (or τ!)) , recoiling hadronic system, and missing momentum

- Theoretically well-understood in the SM
 - Tree level virtual W emission – strong V-A structure
 - No QCD interaction between the lepton-neutrino system and the recoiling hadron(s)
 - $\bar{B} \rightarrow W^{*\pm} D(\ast)$ half of the decay still needs non-perturbative input

- Charged lepton universality implies branching fractions for semileptonic decays to e, μ, τ differ only phase space and helicity-suppressed contributions

What we want to measure

\[R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)} \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^{(*)} \ell^- \bar{\nu}_\ell)} \]

- **Theoretically clean** due to cancellation of form factor uncertainties
 - Poorly-measured helicity suppressed amplitudes give dominant uncertainty
 - SM: \(R(D^*) = 0.252(3) \) PRD 85 094025 (2012)
 - \(R(D) = 0.300(8) \) arxiv:1505.03925

- **Experimentally nice with** \(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau \)
 - Results in identical (visible) final state
 - Large, well-measured BF: \(\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) = (17.41 \pm 0.04)\% \)
 - Expected (signal)/(normalization)=0.439%
 - Disentangle from \(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell \) using invariant mass of invisible system, lepton energy spectrum
Distinguishing $b \to c\tau(\to \ell\nu\nu)\nu$ from $b \to c\ell\nu$

- In B rest frame, three key kinematic variables:

 \[q^2 = (p_\ell + p_\nu)^2 = m_{W^*}^2 \]

 \[q^2 > 0 \]

 \[m_{miss}^2 > 0 \]

 \[E_\ell^* / |p_\ell^*| \]

 \[m_\tau^2 \leq q^2 \leq 10.6 \text{ GeV}^2 \]

<table>
<thead>
<tr>
<th>$\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}$</th>
<th>$\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{miss}^2 > 0$</td>
<td>$m_{miss}^2 = 0$</td>
</tr>
<tr>
<td>E_ℓ^* spectrum is soft</td>
<td>E_ℓ^* spectrum is hard</td>
</tr>
<tr>
<td>$m_\tau^2 \leq q^2 \leq 10.6 \text{ GeV}^2$</td>
<td>$\approx 0 \leq q^2 \leq 10.6 \text{ GeV}^2$</td>
</tr>
</tbody>
</table>
“Hadronic tagging” algorithms semi-inclusively reconstruct a hadronically decaying B meson

EMC energy used to pick “best” reconstruction for a given event and to select D*π control sample

- Select events with $q^2 = (p_\ell + p_{\text{miss}})^2 = (p_B - p_D)^2 > 4 \text{ GeV}^2$

$D^{(*)}$ candidate in sum of exclusive channels covering $O(1/4)$ of charm total width

Neutrino system strongly constrained by reconstruction of the rest of event m^2_{miss}
Extracting the Signal

- **Fit** is performed in mass squared of invisible system vs lepton momentum in B frame
 - Split between D^0, D^+, D^{*0}, D^{*+} samples

- Distributions for fit taken from simulation
 - Missing mass squared best discriminator of signal from normalization ($D^{(*)} \ell \nu$)
 - Backgrounds separated in mm and pl for BaBar, special neural net for Belle

PRL 109 (2012) 101802
PRD 88 (2013) 072012

arXiv: 1507.03233
Fits – BaBar

- BaBar published their hadronically-tagged result on the final dataset in 2012/2013 (PRL+detailed PRD)

- Result showed tantalizing tension with SM: 3.4 sigma including correlations!

- This is where things stood until FPCP this year, when two new measurements were released!
New $R(D(*))$ Results

At FPCP2015, Belle weighed in with their full dataset
- Result shows no serious tension with either BaBar or SM (almost splits the difference by eye)

arXiv: 1507.03233
What about LHCb?

- In hadron collisions, things are not nearly as “nice” as in $\Upsilon(4S)$ decay
 - Unknown CM frame for $g g \rightarrow b\bar{b}$ production
 - Lots of additional particles in the event (showering, MPI etc)

- Different handles are needed to deal with (1) missing neutrinos and underconstrained kinematics as well as (2) large backgrounds from partially-reconstructed B decays
Rest frame approximation at LHCb

- Resolution on rest frame variables doesn’t matter much because distributions are broad to begin with
 - A well-behaved approximation will still preserve differences between signal, normalization and backgrounds
 - Take \((\gamma \beta_z)_{\bar{B}} = (\gamma \beta_z)_{D^* \mu} \implies \langle p_z \rangle_{\bar{B}} = \frac{m_B}{m(D^* \mu)} \langle p_z \rangle_{D^* \mu}\)

- 18% resolution on B momentum approximation gives excellent shapes to use for fit
• Using rest frame approximation, construct 3D “template” histograms for each process contributing to \(D^{*+}\mu^- \) sample
 ◦ Signal, normalization, and partially reconstructed backgrounds use simulated events, other backgrounds use control data

• Reduce partially constructed backgrounds with LHCb’s excellent tracking
 ◦ Scan over every reconstructed track and compare against \(D^{*+}\mu^- \) vertex
 ◦ Cut on most SV-like track below threshold: get signal sample enriched in exclusive decays. Rejects 70% of events with 1 additional slow pion
 ◦ Cut on most SV-like track(s) being above threshold: get control samples enriched in interesting backgrounds (\(\bar{B} \to D^{**}\ell\nu, B \to D^*H_c(\to \mu\nu X')X, H_c = \) any open charm)
• Projections of (left) m_{miss}^2 and (middle) E_μ^* and (right) q^2

• Signal clearly much smaller than normalization, as expected from phase-space suppression combined with $\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau) \approx 17\%$

• Result: $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
Systematics

Model uncertainties

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Absolute size (×10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated sample size</td>
<td>2.0</td>
</tr>
<tr>
<td>Misidentified μ template shape</td>
<td>1.6</td>
</tr>
<tr>
<td>$\bar{B}^0 \to D^+ (\tau^--/\mu^-)\bar{\nu}$ form factors</td>
<td>0.6</td>
</tr>
<tr>
<td>$\bar{B} \to D^{**} H_c (\to \mu \nu X') X$ shape corrections</td>
<td>0.5</td>
</tr>
<tr>
<td>$\mathcal{B}(\bar{B} \to D^{} \tau^- \bar{\nu}_\tau)/\mathcal{B}(\bar{B} \to D^{} \mu^- \bar{\nu}_\mu)$</td>
<td>0.5</td>
</tr>
<tr>
<td>$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections</td>
<td>0.4</td>
</tr>
<tr>
<td>Corrections to simulation</td>
<td>0.4</td>
</tr>
<tr>
<td>Combinatorial background shape</td>
<td>0.3</td>
</tr>
<tr>
<td>$\bar{B} \to D^{**} (\to D^+ \pi) \mu^- \bar{\nu}_\mu$ form factors</td>
<td>0.3</td>
</tr>
<tr>
<td>$\bar{B} \to D^{**} (D_s \to \tau \nu) X$ fraction</td>
<td>0.1</td>
</tr>
<tr>
<td>Total model uncertainty</td>
<td>2.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Absolute size (×10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalization uncertainties</td>
<td></td>
</tr>
<tr>
<td>Simulated sample size</td>
<td>0.6</td>
</tr>
<tr>
<td>Hardware trigger efficiency</td>
<td>0.6</td>
</tr>
<tr>
<td>Particle identification efficiencies</td>
<td>0.3</td>
</tr>
<tr>
<td>Form-factors</td>
<td>0.2</td>
</tr>
<tr>
<td>$\mathcal{B}(\tau^- \to \mu^- \bar{\nu}\mu \nu\tau)$</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total normalization uncertainty</td>
<td>0.9</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Expected to be reduced for future $R(D) + R(D^*)$

Will scale down with more data (Run2)
Combined R(D*) data

\[\Delta \chi^2 = 1.0 \]

\[R(D^*)_{avg} = 0.322 \pm 0.022 \]
\[R(D)_{avg} = 0.391 \pm 0.050 \]
\[\rho = -0.29 \]

- Plot and average from HFAG
 - SM p-value = \(1.1 \times 10^{-4}\) \(\rightarrow\approx 3.9\sigma\)
Other results of note
\(\Upsilon(1S) \) decay

- Nonuniversal effects in \(\Upsilon(1S) \rightarrow \mu\mu/\tau\tau \) can be induced by pseudoscalar Higgs \(A^0 \) (directly or via mixing with \(\eta_b \))

- BaBar searched in \(\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi \)
 - \(\Upsilon(1S) \rightarrow \mu\mu \) is fully reconstructed
 - \(\Upsilon(1S) \rightarrow \tau\tau \) is selected based on missing energy after the \(\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi \) dipion system is identified

Result:
- \(R_{\mu\tau} = 1.005 \pm 0.013 \pm 0.022 \)
Looking Ahead...
Future Heavy Flavor Experiments

- $e^+ e^-$
 - Belle-II / Super-KEKB
 - Nanobeams, improved final focus, and doubled beam currents to reach 8×10^{35} Hz/cm2
 - Physics data to begin in 2018, with a goal of $50 \text{ab}^{-1} \approx 6 \times 10^{10} B\bar{B}$ pairs

- $p\bar{p}$
 - LHCb Run 2:
 - 13TeV with 25ns spacing
 - LHCb to collect $5 \text{fb}^{-1} \approx 6 \times 10^{11} b\bar{b}$ in acceptance
 - LHCb Upgrade:
 - LHCb detector to be upgraded for increased instantaneous luminosity running in LS2(2018/2019)
 - All-new tracking system to cope with increased occupancy
 - 40MHz synchronous readout plus all-software triggering
 - $50 \text{fb}^{-1} \approx 6 \times 10^{12} b\bar{b}$ in acceptance
$R(K)$ future prospects

- $b \rightarrow s\ell\ell$ still largely statistically limited (particularly in $B^+ \rightarrow K^+ e^+ e^-$)

- Naively scaling statistical error bars:
 - LHCb 2018: $R(K) = x.xx \pm 0.04 \pm 0.04$
 - Assumes no systematic uncertainty improvement—very pessimistic assumption
 - Systematics currently dominated by trigger efficiencies. Can be reduced by dedicated study
 - Belle II: $R(K) = x.xx \pm 0.03\pm$?
 - Systematics currently codominated by a variety of sources. Probably can be controlled with careful study...
 - LHCb Upgrade: $R(K) = x.xx \pm 0.02\pm$?
 - Here we will be dealing with an all-new trigger scheme. How well can we nail the relative efficiency down?
\[R(D^{(*)}) \]

- **Belle II:**
 - Analysis is limited by the statistics available after hadronic B-tagging.
 - Expected scaling given on right
 - Could reach 2% sensitivity after full luminosity is collected

- **LHCb:**
 - Situation is more subtle. Currently systematics dominated, but dominated by MC stats
 - Most systematics (e.g. shape uncertainties) scale with data or control samples
 - Systematic from misidentified muon background requires more effort to reduce
 - Uncertainty on \(R(D^*) \) of 7%-9% could be possible with Run2 data, 3%-4% with upgrade
 - Depends on how trigger efficiencies evolve
 - (Assumes BaBar central value for comparison with above plot)

Model uncertainties

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Absolute size ((\times 10^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated sample size</td>
<td>2.0</td>
</tr>
<tr>
<td>Misidentified (\mu) template shape</td>
<td>1.6</td>
</tr>
<tr>
<td>(B^0 \to D^{(*)+}(\tau^-/\mu^-)\bar{\nu}_\tau) form factors</td>
<td>0.6</td>
</tr>
<tr>
<td>(B \to D^{(*)+}H_c(\to \mu\nu X)X) shape corrections</td>
<td>0.5</td>
</tr>
<tr>
<td>(B(B \to D^{()+}\nu_\mu)B(B \to D^{()+}\tau_\mu))</td>
<td>0.5</td>
</tr>
<tr>
<td>(B \to D^{()+}(\to D^{()+}\pi^0)\mu\nu shape corrections</td>
<td>0.4</td>
</tr>
<tr>
<td>Corrections to simulation</td>
<td>0.4</td>
</tr>
<tr>
<td>Combinatorial background shape</td>
<td>0.8</td>
</tr>
<tr>
<td>(B \to D^{()+}(\to D^{()+}\tau_\mu)\mu\nu shape factors</td>
<td>0.3</td>
</tr>
<tr>
<td>(B \to D^{(*)+}(D_s \to \tau\nu)X) fraction</td>
<td>0.1</td>
</tr>
<tr>
<td>Total model uncertainty</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Normalization uncertainties

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Absolute size ((\times 10^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated sample size</td>
<td>0.6</td>
</tr>
<tr>
<td>Hardware trigger efficiency</td>
<td>0.6</td>
</tr>
<tr>
<td>Particle identification efficiencies</td>
<td>0.3</td>
</tr>
<tr>
<td>Form-factors</td>
<td>0.2</td>
</tr>
<tr>
<td>(B(\tau^- \to \mu^-\bar{\nu}\mu\nu\tau))</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Total normalization uncertainty</td>
<td>0.9</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Summary

- B physics experiments are pushing lepton universality tests into new and exciting territories beyond tests of the Electroweak interaction.

- R_K measurements from electroweak penguin decays are reaching the 10% precision level with LHCb Run1.
 - Further improvements expected to be rapid with LHCb Run2, Belle-II, LHCb Upgrade datasets.
 - Small tension in LHCb result can be related back to other tensions in branching ratios at low q^2.
 - SM still provides a very respectable fit, but possibilities are tantalizing!

- Semitauonic branching fractions remain too large relative to SM expectations.
 - P-level with respect to HQET+Lattice now at 10^{-4} level.
Backup
B-factory measurements

- Exploiting the simple kinematics of the $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ reaction
 - Small Q-value means no additional hadrons produced

- "Hadronically-tagged" analyses preferred in channels with multiple neutrinos
 - Reconstruct 2nd B meson in decay mode with no missing particles
 - Provides precise knowledge of kinematics of missing system
 - Reduces backgrounds from $e^+e^- \rightarrow c\bar{c}$ and from background partially-reconstructed B decays
 - Allows use of calorimeter to veto events with
 - Efficiency of few 10^{-3} -- costly!

Figure from T. Lück’s talk at ICHEP 2014
FCNC generalities

- Flavor-changing Neutral Currents (FCNC) are forbidden at tree-level in the SM
 - Ensured by GIM mechanism, assuming Higgs Yukawas are the only source of flavor violation

- FCNCs in standard model first appear at second order in the weak interaction:

\[\Delta F = 2 \text{ “box” diagrams} \]

\[\Delta F = 1 \text{ “penguin” diagrams} \]
Reducing partially reconstructed backgrounds

- Make use of superb tracking system
 - Scan over every reconstructed track and compare against $D^{*+}\mu^-\pi^-$ vertex
 - Check for vertex quality with PV and SV, change in displacement of SV, p_T, alignment of track and $D^{*+}\mu^-$ momenta

- Each track receives BDT score as “SV-like” (high) vs “PV-like” (low)
 - Cut on most SV-like track below threshold: get signal sample enriched in exclusive decays. Rejects 70% of events with 1 additional slow pion
 - Cut on most SV-like track(s) being above threshold: get control samples enriched in interesting backgrounds (B2dstst, B2hc)
Contributions of excited charm states in the $B^{\pm,0} \rightarrow (c\bar{q})\mu\nu$ transition are large

- 1P states decaying as $D^*\pi$ known and reasonably well-described by theory (HQET)
 - $D^{*+}\mu^\mp\pi^-$ control sample sets nonperturbative shape parameters for input to signal fit
 - States decaying as $D^*\pi\pi$ less well-understood, fit insensitive to exact composition.
 - $D^{*+}\mu^-\pi^+\pi^-$ control sample used to correct q^2 spectrum to match data

- Distinguishable by “edge” at missing mass $\approx (2)m_\pi$
\[B \rightarrow D^{*+} H_c (\rightarrow \mu \nu X') X \] background

- \(b \rightarrow c \bar{c} q \) decays can lead to very similar shapes to the semitauonic decay (e.g. \(B^0 \rightarrow D^{*+} D_s^- (\rightarrow \phi \mu \nu) \) +many others)
- Highly suppressed in B-factory analyses due to complete event reconstruction, but very important at LHCb
- Branching fractions well-cataloged, but detailed descriptions of the \(D^* D K (n \geq 0 \pi) \) final states are not well-simulated
 - Dedicated \(D^{*+} \mu^- K^\pm \) control sample used to improve the template to match data

\[B^0 \rightarrow D^{*+} H_c (\rightarrow \mu \nu X') X \text{ vs } B^0 \rightarrow D^{*+} \tau^- \nu_\tau \]
Big picture $\bar{B} \rightarrow D^*\tau\nu$

$\bar{B}^0 \rightarrow D^{*+}\mu^-\bar{\nu}_\mu$ (normalization)

$\bar{B}^0 \rightarrow D^{*+}\tau^-\bar{\nu}_\tau$
(signal)

$\bar{B}^0 \rightarrow D^{**+}\mu^-\bar{\nu}_\mu + \bar{B}^0 \rightarrow D^{**+}\tau^-\bar{\nu}_\tau$

$\bar{B}^- \rightarrow D^{**0}\mu^-\bar{\nu}_\mu + \bar{B}^- \rightarrow D^{**0}\tau^-\bar{\nu}_\tau$

$D^{**} \rightarrow D^{*+}\pi$ (3 states each, 6 PDFs)

$\bar{B}_s^0 \rightarrow D_s^{**+}\mu^-\bar{\nu}_\mu$

$D_s^{**} \rightarrow D^{*+}K_s^0$, (2 states, 1 free param)

$B^{+,0} \rightarrow \bar{D}^{**}\mu^+\nu_\mu$

$\bar{D}^{**} \rightarrow D^{*-}\pi\pi$, (cocktail)

$\bar{B} \rightarrow D^{*+}H_c (\rightarrow \mu\nu X')X$

$+\bar{B} \rightarrow D^{*+}D_s^- (\rightarrow \tau^-\bar{\nu}_\tau)X$

Control sample fits to constrain shapes

combinatorial D^{*+}
combinatorial $D^{**+}\mu^-$

$h \rightarrow \mu$ misidentification
Detailed fit projections

- Projections of (left) m_{miss}^2 and (right) E_μ^* in bins of increasing q^2 from top to bottom.

- Signal more clearly visible here in highest q^2 bin.
 - Note different y scales, most signal actually in second-highest q^2 bin.