Study of baryonic B meson decays at BABAR

David N. Brown
University of Louisville
For the BABAR Collaboration

Meeting of the Division of Particles and Fields
Of the American Physical Society
University of Michigan, Ann Arbor, MI
August 4-8, 2015
Studies of baryonic B meson decays at $BABAR$

This Talk

- Recent Results on baryonic B decays

 $\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^-$

 $\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} K^+ K^-$

 $\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} p \bar{p}$

 $\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}$

(charge conjugation implied throughout)

Reminder – $BABAR$ Physics Reach

- B-physics
 - CP Violation & Mixing, CKM matrix elements, hadronic, leptonic & semi-leptonic decays, penguin decays, etc

- Charm and charmonium

- Tau physics

- Initial state radiation (ISR)

- Bottomonium spectroscopy

- Two-photon physics

- Beyond the Standard Model

- More
Motivation – baryonic B Decays

• In general, B decays provide an important platform for understanding CP-Violation and the CKM mechanism
 – Does it contribute to baryon asymmetry?

• Baryonic modes involve strong interactions in hadronization and final state interaction – study fragmentation, QCD models, etc.

• Poorly understood details of baryonic B decays need study

• Measurements of rare modes improve our model constraints and can signal new physics
Baryonic B decay detailed motivation

- 6.8% of all B decays are baryonic*
- Fewer than 10% of these are accounted for via exclusive modes!
- What about the rest?

Hou and Soni (PRL 86, 4247): for B baryonic decays, energy must be taken away by particles other than baryons
- Threshold enhancement in baryon anti-baryon invariant mass
- Suppression of two-body baryonic B decay modes
- B (2-body) < B (3-body) < B (4-body)

Relative effects of resonant substructure and fragmentation on branching fractions?

Examples for baryonic B-decays (PDG values)

<table>
<thead>
<tr>
<th>B^0/B^- decay mode</th>
<th>branching fraction [$\times 10^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_c^+ p$</td>
<td>0.20 ± 0.04</td>
</tr>
<tr>
<td>$\Lambda_c^+ p\pi^-$</td>
<td>2.8 ± 0.8</td>
</tr>
<tr>
<td>$\Lambda_c^+ p\pi^0$</td>
<td>1.9 ± 0.5</td>
</tr>
<tr>
<td>$\Lambda_c^+ \Lambda_c^- K^-$</td>
<td>8.7 ± 3.5</td>
</tr>
<tr>
<td>$\Lambda_c^+ \Lambda_c^- K^-$</td>
<td>22 ± 7</td>
</tr>
<tr>
<td>$D^{*0}_s p\bar{p}$</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>$D^{*+}_s p\bar{n}$</td>
<td>14 ± 4</td>
</tr>
<tr>
<td>$D^0 p\Lambda$</td>
<td>0.14 ± 0.03</td>
</tr>
<tr>
<td>$\Lambda\bar{p}$</td>
<td>< 0.003</td>
</tr>
<tr>
<td>$\Lambda\bar{p}\pi^-$</td>
<td>0.031 ± 0.003</td>
</tr>
<tr>
<td>$p\bar{p} K^0$</td>
<td>0.027 ± 0.003</td>
</tr>
<tr>
<td>$p\bar{p} K^-$</td>
<td>0.055 ± 0.005</td>
</tr>
</tbody>
</table>

*ARGUS Collaboration, ZP C56, 1 (1992)
Threshold Enhancements

\[\bar{B}^0 \rightarrow D^0 p\bar{p} \]

\[B^- \rightarrow \Lambda_c^+ p\pi^- \]

Previous measurements from 3-body modes

Both involve "meson pole"

[PR D85, 092017 (2012)]

[PR D78, 112003 (2008)]
Kinematics of B Decays

- Fully reconstructed B mesons: two variables are commonly used (exploiting the precise knowledge of the beam energy):

 \[\Delta E = E_{\text{meas}} - E_{\text{beam}} \]

 \[m_{ES} = \sqrt{E_{\text{beam}}^2 - p_{\text{meas}}^2} \]

 Invariant mass can also be used: \[m_B = \sqrt{E_{\text{meas}}^2 - p_{\text{meas}}^2} \]

- Dominant background: $q\bar{q}$ ($q = u, d, s, c$), exhibiting a jet-like topology ($B\bar{B}$ events are more “spherical”).

- We separate/suppress the continuum background, combining several variables sensitive to the event shape.
\[\bar{B}^0 \rightarrow \Lambda_c^+ p \pi^+ \pi^- \]
\[\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^- \]

- There are many possible resonances – will this affect the total branching fraction?

\[
(\Lambda_c^+ \pi^+) \Rightarrow \Sigma_c^{++} (2455), \Sigma_c^{++} (2520), \text{ etc.}
\]

\[
(\Lambda_c^+ \pi^-) \Rightarrow \Sigma_c^0 (2455), \Sigma_c^0 (2520), \text{ etc.}
\]

\[
(p\pi) \Rightarrow \text{ various } N, \Delta
\]

- Will a quark difference between \(\Sigma_c^0 \) and \(\Sigma_c^{++} \) affect possible threshold enhancement in \(m(\Sigma_c \bar{p}) \)?

467 \times 10^6 \bar{B} \bar{B} \text{ pairs in analysis}
$\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^-$ Fits

Charged sub-modes

Neutral sub-modes
$\bar{B}^0 \to \Lambda_c^+ \bar{p} \pi^+ \pi^-$ Results

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>fitted signal yield</th>
<th>branching fraction [10^{-4}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{B}^0 \to \Sigma_c^{++}(2455)\bar{p}\pi^-$</td>
<td>723 ± 32</td>
<td>$2.13 \pm 0.10 \pm 0.10 \pm 0.55$</td>
</tr>
<tr>
<td>$\bar{B}^0 \to \Sigma_c^0(2455)\bar{p}\pi^+$</td>
<td>347 ± 24</td>
<td>$0.91 \pm 0.07 \pm 0.04 \pm 0.24$</td>
</tr>
<tr>
<td>$\bar{B}^0 \to \Sigma_c^{++}(2520)\bar{p}\pi^-$</td>
<td>458 ± 38</td>
<td>$1.15 \pm 0.10 \pm 0.05 \pm 0.30$</td>
</tr>
<tr>
<td>*$\bar{B}^0 \to \Sigma_c^0(2520)\bar{p}\pi^+$</td>
<td>87 ± 27</td>
<td>$0.22 \pm 0.07 \pm 0.01 \pm 0.06$</td>
</tr>
<tr>
<td>$(\bar{B}^0 \to \Lambda_c\bar{p}\pi^+\pi^-)_{\text{non-}\Sigma_c}$</td>
<td>2728 ± 132</td>
<td>$7.9 \pm 0.4 \pm 0.4 \pm 2.0$</td>
</tr>
</tbody>
</table>

uncertainties: statistical, systematic, and from $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$

$\mathcal{B}(\bar{B}^0 \to \Lambda_c\bar{p}\pi^+\pi^-)_{\text{total}} = (12.3 \pm 0.5 \pm 0.7 \pm 3.2) \times 10^{-4}$

More than half of this attributable to resonances

*First evidence this mode: 3.2 σ

Resonant Substructure?

$$\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^-$$
Threshold Enhancements in submodes

\[\bar{B}^0 \rightarrow \Sigma^{++} \bar{p} \pi^- \]

Different diagrams for charged and neutral Sigma
- Difference in both threshold behavior and overall production rate.

\[\bar{B}^0 \rightarrow \Sigma^0 \bar{p} \pi^+ \]

Meson Pole

No Meson Pole

$\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} K^+ K^-$
\(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} K^+ K^- \)

- Four-body mode, similar to \(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^- \)
 - Same baryons, meson difference due to popping an \(s\bar{s} \) pair instead of a \(d\bar{d} \) pair. Expect suppression by at least factor 3
 - Less resonant substructure available. Recall that \(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^- \) is dominated by resonant contributions

2015 Aug 7
B to baryons at BABAR – Brown, DPF2015

471 × 10^6 \(B\bar{B} \) pairs in analysis
Results

\[\bar{B}^0 \rightarrow \Lambda_c^+ p K^+ K^- \]

Reconstruct \(\Lambda_c^+ \rightarrow p K^+ \pi^- \)

Signal extracted with a fit to the energy-substituted mass \(m_{ES} \) and the invariant mass \(m_B \)

Statistical Significance of result

\[S = \sqrt{-2 \log \left(\frac{L_0}{L_{\text{sig}}} \right)} = 5.4 \sigma \]

Simulated Signal

Projections of data

\[N = 66 \pm 12 \]
\[\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} K^+ K^- \] Resonances

- Threshold enhancement not significant, consistent with result for \(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^- \)

\[\mathcal{B} \left(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} K^- K^+ \right) = \left(2.5 \pm 0.4_{\text{stat}} \pm 0.2_{\text{syst}} \pm 0.6_{\Lambda_c^+} \right) \times 10^{-5} \]

Suppressed by factor \(\sim 50 \) compared to \(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \pi^+ \pi^- \)
Or factor \(\sim 25 \) compared to just non-resonant part

- Find evidence for only one resonance: \(\phi \)
- Setup 90\% Confidence Level upper limit:

\[\mathcal{B} \left(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} \phi \right) < 1.2 \times 10^{-5} \]
$\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p} p \bar{p}$

\[\bar{B}^0 \to \Lambda_c^+ \bar{p} p \bar{p} \]

Small phase space is available to this decay, with available kinetic energy \(\sim 1/10 \) of \(\bar{B}^0 \to \Lambda_c^+ \bar{p} \pi^+ \pi^- \)

But in baryonic decays, smaller phase space not suppressed?

\[B(\bar{B}^0 \to \Lambda_c^+ \bar{p} p \bar{p}) \cdot \frac{B(\Lambda_c^+ \to pK^+ \pi^-)}{5 \%} < 2.8 \times 10^{-6} \quad @ \ 90\% \ CL \]

Compare:

\[B(\bar{B}^0 \to \Lambda_c \bar{p} \pi^+ \pi^-)_{\text{total}} = (12.3 \pm 0.5 \pm 0.7 \pm 3.2) \times 10^{-4} \]

less than half is non-resonant 4-body

471 \times 10^6 \ B\bar{B} \ pairs in analysis

Note:

\[B(\Lambda_c \to pK\pi) \sim 5\% \]
$\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}$

\[\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda} \]

\[\bar{B}^0 \rightarrow D^0 p\bar{p} \]

\[B(\bar{B}^0 \rightarrow D^0 p\bar{p}) = (1.13 \pm 0.10) \times 10^{-4} \]

[PR D74, 051101 (2006)]

\[471 \times 10^6 \bar{B}\bar{B} \text{ pairs in analysis} \]

Expect suppression \(\sim 1/3 \) for \(s \) quark vs. \(u \)

Also suppression \(\sim 1/4 \) due to possible final states

\[\Lambda\bar{\Lambda}, \ \Lambda\bar{\Sigma}^0, \ \Sigma^0\bar{\Lambda}, \ \Sigma^0\bar{\Sigma}^0 \]
$\bar{B}^0 \rightarrow D^0 \Lambda \Lambda$ Fits

Simultaneous fit to $D^0 \rightarrow K^- \pi^+$

$D^0 \rightarrow K^- \pi^+ \pi^0$

$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
$\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}$ Results

evidence at 3.4σ

$$\mathcal{B}(\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}) = (9.8^{+2.9}_{-2.6} \pm 1.9_{\text{syst}}) \times 10^{-6}$$

Belle: $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}) = (10.5^{+5.7}_{-4.4} \pm 0.14) \times 10^{-6}$

Theory: $\mathcal{B}(\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda}) = (2.3 \pm 0.8) \times 10^{-6}$

$$\frac{D^0 \Sigma^0 \Lambda + D^0 \bar{\Sigma}^0 \Lambda}{D^0 \Lambda \bar{\Lambda}} = 1.5 \pm 0.9 \quad \text{consistent with} \quad 2$$

$\mathcal{B}(\bar{B}^0 \rightarrow D^0 p \bar{p}) = (1.04 \pm 0.07) \cdot 10^{-4}$

Belle, BABAR average

$$\frac{D^0 \Lambda \bar{\Lambda}}{D^0 p \bar{p}} = \frac{1}{10.6 \pm 3.7} \quad \text{consistent with} \quad \frac{1}{12}$$
Summary

• Results presented this talk:

Improved measurements these modes:

\[\mathcal{B}(B^0 \to \Lambda_c \bar{p} \pi^+ \pi^-)_{\text{total}} = (12.3 \pm 0.5 \pm 0.7 \pm 3.2) \times 10^{-4} \]

Including first evidence for \(B^0 \to \Sigma^0_{c}(2520) \bar{p} \pi^+ \)

\[\mathcal{B}(B^0 \to D^0 \Lambda \bar{\Lambda}) = (9.8^{+2.9}_{-2.6} \pm 1.9_{\text{syst}}) \times 10^{-6} \]

And first measurements these modes:

\[\mathcal{B}(\bar{B}^0 \to \Lambda^+_c \bar{p} K^- K^+) = \left(2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})} \pm 0.6_{(\Lambda^+_c)}\right) \times 10^{-5} \]

\[\mathcal{B}(\bar{B}^0 \to \Lambda^+_c \bar{p} \phi) < 1.2 \times 10^{-5} \]

\[\mathcal{B}(\bar{B}^0 \to \Lambda^+_c \bar{p} \bar{p} \bar{p}) \cdot \mathcal{B}(\Lambda^+_c \to p K^- \pi^+) < 2.8 \cdot 10^{-6} \text{ @ 90\% CL} \]
• **BABAR** continues producing interesting and competitive results.

 • new analyses improve understanding of baryon production in B decays, but still ~90% of all channels unknown

 • Resonant substructure appears to increase baryonic B decay branching fractions – not only having extra particles in the final state.

 • hadronisation is similar to (jet) fragmentation (e.g. s quark suppression)

 • baryon-antibaryon threshold enhancement is qualitatively understood (no quantitative theory)

Thank You!
GO BARYONS
Back Up Slides
The **B**a**B**a**R** Running Era

7 Runs over the course of 9 years

- First collisions with BaBar
 May 26, 1999
- Final data taken 12:43 p.m., April 7, 2008

BaBar

Run 1-7

PEP II Delivered Luminosity: 553.34/fb
BaBar Recorded Luminosity: 531.32/fb
BaBar Recorded Y(4s): 432.89/fb
BaBar Recorded Y(3s): 30.23/fb
BaBar Recorded Y(2s): 14.45/fb
Off Peak Luminosity: 53.74/fb

Delivered Luminosity
Recorded Luminosity
Recorded Luminosity Y(4S)
Recorded Luminosity Y(3S)
Recorded Luminosity Y(2S)
Off Peak

BaBar

As of 2008/04/07 00:00

CUSB

2015 Aug 7

B to baryons at BABAR – Brown, DPF2015
The BABAR Experiment at SLAC

- Asymmetric-energy beams for boost
- Modern/state of the art detector
- 5 cylindrical subdetectors with a 40-layer drift chamber
- Excellent electromagnetic calorimetry
- Multiple measurements for particle identification
- Excellent momentum resolution

- Primarily designed for study of CP-violation in B meson decays
- Quality and general-purpose design make it suitable for a large variety of studies

2015 Aug 7
B to baryons at BABAR – Brown, DPF2015