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No turning back!

Over the past 25 years, Multivariate analysis (MVA)
methods have gained gradual acceptance in HEP.

In fact, they are now “state of the art”

Some of the most important physics results in HEP, in
the past two decades, have come from the use MVA
methods.

In 1990’s, I'd have on my title slide
"We are riding the wave of the future”
That future is here, and MVA methods are here to stay!
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Important Physics Results

From top quark to the Higgs

... and many smart applications in object ID, energy
corrections, as well

‘op-antitop event selection optimization — 1990-95 (DO)
‘'op quark mass measurement -- 1996-97

"op cross section measurements in all channels (1995 -)
Top observation in the all-jets channel (D0) (1999)
New particle/physics searches (1997 - )
Observation of single top quark production (2009)
Evidence for Higgs—> bb at the Tevatron (2012)

Higgs Discovery at the LHC In 2012
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MVA for Top quark in the mid-go's
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MVA use in Higgs Discovery

* MVA used in every possible analysis aspect
= Electrons/photons ID
= MVA regression for EM cluster energy corrections
= Vertex identification (diphotons)
= b-tagging
S/B discrimination in all channels
" vy, ZZ=24l, (WW, bb, t7)

Pushpa Bhat DPF2015



Broad Categories of
Analysis Tasks

= Classification
= Object ID with high efficiency and low fake rates
* Identification of electrons, photons, taus, b-quark jets, ..
= signal/background discrimination
= Parameter Estimation
= Measurement of quantities; observables €=» parameters
= Function fitting
= Energy correction functions, tag-rate functions, ...
Mathematically, all of these are Functional
Approximation problems.
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Classification

* |n classification, the function to be approximated is

i PSS
S(x)=p(S]x) p(x|S)p(S)+ p(x | B)p(B)

where S and B denote signal and background,
respectively.

» |n practice, it is sufficient to approximate the
discriminant

p(x|S)
p(x|S)+ p(x|B)

‘D(x) =

because D(x) and p(S|x) are related one-to-one:

D(x)
D(x) +[L— D(x)]/ A

where A = p(S) [ p(B) is the prior signal to background ratio

p(S[x) =
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Multivariate Methods

A list of popular methods
* Random Grid Search
= Linear Discriminants
= Quadratic Discriminants
= Support Vector Machines
= Naive Bayes (Likelihood Discriminant)
= Kernel Density Estimation
» Neural Networks
» Bayesian Neural Networks
= Decision Trees
» Random Forests
= Genetic Algorithms
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Machine Learning

» Paradigm for automated learning from data, using

computer algorithms
= Has origins in the pursuit of artificial intelligence starting ~1960

» Requiring little a prioriinformation about the function to
be learned

= A method that can approximate a continuous non-linear
function to arbitrary accuracy is called a universal

approximator
= e.g. Neural Networks
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Machine Learning Approaches

= Supervised Learning

= Supervised learning with a training data set containing feature
variables (inputs) and target to be learned: {y,x}

» Unsupervised Learning

= No targets provided during training.
= Algorithm finds associations among inputs.

= Reinforcement Learning
= Correct outputs are rewarded, incorrect ones penalized.
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“Rectangular” Cuts

Reqular Grid search

RGS can serve as a benchmark Nt

for comparisons of efficacy
of variables, variable combinatio

Signal eff. Vs bkgd. eff
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= # events before cuts
= # events after cuts
Fraction

the signal class as
a cut-point

ROC / Take each point of

X > X,

Background fraction y
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*

Randqc;rr? Grid search (RGS)

and classifiers

H.B.Prosper, P.Bhat, et al. CHEP’ 95

Find “best” cuts
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Neural NeTworks
The Bayesian Connection

» The output of a neural network can approximate
the Bayesian posterior probability p(s|x):

F(xw)=g(Q_ wh; +6) = p(s| x)
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RGS vs NN

= Random 6Grid Search for “cut” optimization
» The best “cut-based” analysis you can do!

= Notice that NN can provide significant gains even in this

simple 2D analysis, at lower backgrounds which is the region
of interest

AS|mpIe |IIustrat|on of MVA  PB, Annu. Rev. Nucl. Part. Sci. 2011, 61:281-309.
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NN/MVA vs Bayes

NN (or any other fully multivariate
technique) can provide discrimination close
to ’rhe Bayes ||m|T

~100p
Ky PB, Annu. Rev. ,6_L€2\OII)
@ i N
£ 80} oo l
> e % - 1>
! 5 \ ot sl
60 ; a iy . : 0 o6
3 e ] 'l““t £ ﬁ
L3 . { IH ) % “. |P=p 4
40 g : il B
B ] ! i
20} 100

100 150 200
Variable x,

P.Bhat, Annu. Rev. Nucl. Part. Sci. 61, 281-309 (2011)
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Bayesian Neural Networks

= Instead of attempting to find a single “best” network, i.e., a
single “best” set of network parameters (weights), with
Bayesian training we get a posterior density for the network
weights, p(w| T), T= Training data

= The idea here is to assign a probability density to each point
W in the parameter space of the neural network. Then one
takes a weighted average over all points, i.e., over all possible

networks. N
y(x) =] f(x,w) p(w|T)dw

. 30, 1) network

= Advantages: [ BT

» Less likely to be affected by “over training” E s
* No need to limit the number of hidden nodes F
» Good results with small fraining sample E
j

P.C. Bhat, H.B. Prosper Phystat 2005, Oxford
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Boosted Decision Tree (BDT)

@_ (3) (b)

Boosting:

Make a sequence of M classifiers (DTs)
that successively handle “harder” events
and take a weighted average = BDT
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« A Decision Tree (DT)
recursively partitions
feature space into regions
or bins with edges aligned
with the axes of the
feature space.

* A response value is

attached to each bin,
D(x) = s/(s+b)

YX) =D et (X, W)

{ }
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P.Bhat, Annu. Rev. Nucl. Part. Sci. 61, 281-309 (2011)
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What method is best?

= The “no free lunch” theorem tells you that there is no
one method that is superior to all others for all problems.

* |[n general, one can expect Bayesian neural networks
(BNN), Boosted decision trees (BDT) and random forests
(RF) to provide excellent performance over a wide range
of problems.

» BDT is popular because of robustness, noise resistance
(and psychological comfort!)
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The Buzz about Deep Learning

* Alot of excitement about "Deep Learning” Neural
Networks (DNN) in the Machine Learning community
= Spreading to other areas!
= Some studies already in HEP!

» Multiple non-linear hidden layers to learn very
complicated input-output relationships

* Huge benefits in applications in computer vision (image
orocessing/ID), speech recognition and language
processing
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Deep Learning NN

» Use raw data inputs instead of derived “intelligent”
variables (or use both)
= Pre-processing or feature extraction in the DNN

» Pre-traininitial hidden layers with unsupervised learning

» Multi-scale Feature Learning

= Each high-level layer learns increasingly higher-level features in
the data

» Final learning better than shallow networks, particularly
when inputs are unprocessed raw variables!

* However, need a lot of processing power (implement
In GPUs, time (and training examples)
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Deep Learning
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Background Rejection

Deep Neural Networks for HEP

= Baldi, Padowski, Whiteson ‘arXiv:14oz.4735v2‘

» Studied two benchmark processes
= Charged Higgs vs ttbar events
= SUSY: Chargino pairs vs WW events into dilepton+MET final state
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Technique Low-level High-level Complete
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Unsupervised Learning

The most common approach is to flnd cIusters or hldden
patterns or groupings in data | -

Common and useful methods

= K-Means clustering

= Gaussian mixture models
.. http://chem-

- Self-organlzmg maps (SOM) eng.utoronto.ca/~datamining/Presentations/S

We have not tapped these methods for identifying

unknown components in data, unsupervised

classification, for exploratory data analysis

Could be useful in applications for topological pattern
recognition
= Usein Jet-substructure, boosted jet ID
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Challenges in LHC Run 2 and beyond

= Challenges:
= Pile-Up mitigation!
" <PU>~401n Run2
= Associating tracks to correct vertlces

= Correcting jet energies, MET, suppressing fake “pileup” jets,
= Lepton and photon isolation

= Boosted Objects — —
= Complicates Object ID % hadronic top jet
- W, Z, Higgs, top taggers! '0% )
= Provides new opportunities g !
« Use jet substructure Y~ O simagton
= High energy Lepton ID DR,

= Signals of BSM could be very small
= Small MET in SUSY signatures (compressed, stealth,...)

= Need new algorithms, approaches for reco and analysis
= New ideas in triggering and data acquisition

Pushpa Bhat DPF2015
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Summary

Multivariate methods brought a paradigm shift in HEP
analysis ~20 years ago. Now they are state of the art.

Applications of new ideas/algorithms such as deep
learning should be explored, but the resources involved
may not justify the use in every case.

Revived emphasis on unsupervised learning is good and
should be exploited in HEP.

Well established techniques of the past — single hidden
layer neural networks, Bayesian neural networks,
Boosted Decision Trees should continue to be the
ubiquitous general purpose MVA methods.
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Optimal Discrimination

Signal density

p(x.5) = p(x15) p(S)

Background density
plx. B)= p(xI8) p(B)

density
p (X)

Optimality criterion: minimize ’r!e error rate:

min o+ B

& Minimize the total misclassification error

a=[p(x,B)dx  g=[p(xS)dx

Significance level 1-B: Power

Pushpa Bhat

X

* More dimensions can help!
One dimensional distributions
are marginalized distributions

of multivariate density.
f(x1)=Jg(x1,x2,x3, .. )dx2dx3..
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MINIMIZINg LoSsS oT Lhtormatrion
.. And Risk

= General Approach to functional approximation
= Minimize Loss function:

L{y, f (x,w)}
= Tt is more robust o minimize average loss over
G” pr'edlCTlonS R(w)=iiL{y f(x, W)}

e tmtion RO)=E@)= S0y - fxw)

or a cost (or error) func'rlon C(w) = R(W)+/1Q(W)
* There are many approaches/methods
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Calculating the Discriminant

P(X[S)p(S) (x|S)
p(S|x)= D(X) = P
p(x|S)p(S)+ p(x| B)p(B) K= ox19)+ p(x1B)
= Density estimation, in principle, is simple and straightforward.
= Histogramming:
= Histogram data in M bins in each of the d feature variables

-)Md bins € Curse Of Dimensionality

= In high dimensions, we would need a huge number of data points or most
of the bins would be empty leading to an estimated density of zero.

= Buft, the variables are generally correlated and hence tend to be
restricted to a sub-space Therefore, Intrinsic Dimensionality << d

» There are more effective methods for density estimation
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