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 Over the past 25 years, Multivariate analysis (MVA) 
methods have gained gradual acceptance in HEP.

 In fact, they are now “state of the art”

 Some of the most important physics results in HEP, in 
the past two decades, have come from the use MVA 
methods.

 In 1990’s, I’d have on my title slide

“We are riding the wave of the future”

 That future is here, and MVA methods are here to stay!
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 From top quark to the Higgs
… and many smart applications in object ID, energy 

corrections, as well
 Top-antitop event selection optimization – 1990-95  (D0)

 Top quark mass measurement  -- 1996-97
 Top cross section measurements in all channels (1995 - )
 Top observation in the all-jets channel   (D0) (1999)
 New particle/physics searches (1997 - )
 Observation of single top quark production (2009) 
 Evidence for Higgs bb at the Tevatron (2012)

 Higgs Discovery at the LHC in 2012
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LB: Low-bias maximum likelihood 
NN: Neural Networks

The Discriminants

DØ Lepton+jets

mt = 173.3 ± 5.6(stat.) 

± 6.2 (syst.) GeV/c2

Fit performed in 2-D:  

(DLB/NN, mfit)

e+jets cut optimization

for cross section

measurement

Top Quark Mass 

Measurement

Observation in all-jets 

channel
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 MVA used in every possible analysis aspect
 Electrons/photons ID

 MVA regression for EM cluster energy corrections 

 Vertex identification (diphotons)

 b-tagging

 S/B discrimination in all channels
 γγ, ZZ4l, (WW, bb, ττ) 
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 Classification 
 Object ID with high efficiency and low fake rates
 Identification of electrons, photons, taus, b-quark jets, ..

 signal/background discrimination

 Parameter Estimation
 Measurement of quantities; observables  parameters

 Function fitting
 Energy correction functions, tag-rate functions, …

Mathematically, all of these are Functional 
Approximation problems.  
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 In classification, the function to be approximated is

where S and B denote signal and background, 
respectively.

 In practice, it is sufficient to approximate the 
discriminant

because D(x) and p(S|x) are related one-to-one:

where A = p(S) / p(B) is the prior signal to background ratio

f (x) =p(S | x) =
p(x | S)p(S)

p(x | S)p(S)+ p(x | B)p(B)
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A list of popular methods
 Random Grid Search
 Linear Discriminants
 Quadratic Discriminants
 Support Vector Machines
 Naïve Bayes (Likelihood Discriminant)
 Kernel Density Estimation 
 Neural Networks
 Bayesian Neural Networks
 Decision Trees
 Random Forests
 Genetic Algorithms
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 Paradigm for automated learning from data, using 
computer algorithms 
 Has origins in the pursuit of artificial intelligence starting ~1960

 Requiring little a priori information  about the function to 
be learned

 A method that can approximate a continuous non-linear 
function to arbitrary accuracy is called a universal 
approximator
 e.g. Neural Networks 
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 Supervised Learning
 Supervised learning with a training data set containing feature 

variables (inputs) and target to be learned: {y,x} 

 Unsupervised Learning
 No targets provided during training.

 Algorithm finds associations among inputs.

 Reinforcement Learning
 Correct outputs are rewarded, incorrect ones penalized.
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Regular Grid search

Random Grid search (RGS)

RGS can serve as a benchmark
for comparisons of efficacy 
of variables, variable combinations,
and classifiers

ROC

Signal eff. Vs bkgd. eff

Find “best” cutsH.B.Prosper, P.Bhat, et al. CHEP’95
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 The output of a neural network can approximate 
the Bayesian posterior probability p(s|x):
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 Random Grid Search for “cut” optimization
 The best “cut-based” analysis you can do!  
 Notice that NN can provide significant gains even in this 

simple 2D analysis, at lower backgrounds which is the region 
of interest

Simple 

cuts

MVA
Simple 

cuts

A simple illustration of MVA PB, Annu. Rev. Nucl. Part. Sci. 2011, 61:281-309. 
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P.Bhat, Annu. Rev. Nucl. Part. Sci. 61, 281-309 (2011)

NN (or any other fully multivariate 
technique) can provide discrimination close 
to the Bayes limit

PB, Annu. Rev. . 61 (2011)PB, Annu. Rev. . 61 (2011)
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 Instead of attempting to find a single “best” network, i.e., a 
single “best” set of network parameters (weights), with 
Bayesian training we get a posterior density for the network 
weights, p(w| T), T Training data

 The idea here is to assign a probability density to each point 
w in the parameter space of the neural network.  Then one 
takes a weighted average over all points, i.e., over all possible 
networks.

 Advantages:
 Less likely to be affected by “over training”

 No need to limit the number of hidden nodes
 Good results with small training sample

 wwwxx dTpfy )|(),()(~

P.C. Bhat, H.B. Prosper Phystat 2005, Oxford
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• A Decision Tree (DT) 
recursively partitions 
feature space into regions 
or bins with edges aligned 
with the axes of the  
feature space.  

• A response value is 
attached to each bin, 

D(x) = s/(s+b) 

Boosting:
Make a sequence of M classifiers (DTs) 
that successively handle “harder” events 
and take a weighted average  BDT
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PB, Annu. Rev. . 61 (2011)

PB, Annu. Rev. . 61 (2011) PB, Annu. Rev. . 61 (2011)

P.Bhat, Annu. Rev. Nucl. Part. Sci. 61, 281-309 (2011)
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 The “no free lunch” theorem tells you that there is no 
one method that is superior to all others for all problems.

 In general, one can expect Bayesian neural networks 
(BNN), Boosted decision trees (BDT) and random forests 
(RF) to provide excellent performance over a wide range 
of problems.

 BDT is popular because of robustness, noise resistance 
(and psychological comfort!)
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 A lot of excitement about “Deep Learning” Neural 
Networks (DNN) in the Machine Learning community
 Spreading to other areas!

 Some studies already in HEP!  

 Multiple non-linear hidden layers to learn very 
complicated input-output relationships

 Huge benefits in applications in computer vision (image 
processing/ID), speech recognition and language 
processing
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 Use raw data inputs instead of derived “intelligent” 
variables (or use both)
 Pre-processing or feature extraction in the DNN

 Pre-train initial hidden layers with unsupervised learning

 Multi-scale Feature Learning
 Each high-level layer learns increasingly higher-level features in 

the data 

 Final learning better than shallow networks, particularly 
when inputs are unprocessed raw variables!

 However, need a lot of processing power (implement 
in GPUs, time (and training examples)



Pushpa Bhat                                                            DPF2015     

“Dropout” algorithm 

to avoid overfitting (pruning)
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 Baldi, Padowski, Whiteson arXiv:1402.4735v2

 Studied two benchmark processes
 Charged Higgs vs ttbar events

 SUSY: Chargino pairs vs WW events into dilepton+MET final state 

Significant improvement in Higgs case, not so dramatic in case of SUSY 
Exotic Higgs SUSY Study

22
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 The most common approach is to find clusters or hidden 
patterns or groupings in data

 Common and useful methods
 K-Means clustering
 Gaussian mixture models
 Self-organizing maps (SOM)

 We have not tapped these methods for identifying 
unknown components in data, unsupervised 
classification, for exploratory data analysis

 Could be useful in applications for topological pattern 
recognition 
 Use in Jet-substructure, boosted jet ID
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 Challenges:
 Pile-Up mitigation!
 <PU>~40 in Run2

 Associating tracks to correct vertices
 Correcting jet energies, MET, suppressing fake “pileup” jets, 
 Lepton and photon isolation

 Boosted Objects
 Complicates Object ID
 W, Z, Higgs, top taggers!

 Provides new opportunities
 Use jet substructure 

 High energy Lepton ID
 Signals of BSM could be very small 
 Small MET in SUSY signatures (compressed, stealth,… )

 Need new algorithms, approaches for reco and analysis
 New ideas in triggering and data acquisition
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 Multivariate methods brought a paradigm shift in HEP 
analysis ~20 years ago.  Now they are state of the art.

 Applications of new ideas/algorithms such as deep 
learning should be explored, but the resources involved 
may not justify the use in every case.  

 Revived emphasis on unsupervised learning is good and 
should be exploited in HEP.

 Well established techniques of the past – single hidden 
layer neural networks, Bayesian neural networks, 
Boosted Decision Trees should continue to be the 
ubiquitous general purpose MVA methods.
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 More dimensions can help!

 One dimensional distributions 
are marginalized distributions 
of multivariate density.

 f(x1)=g(x1,x2,x3, .. )dx2dx3..
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 General Approach to functional approximation
 Minimize Loss function:

 It is more robust to minimize average loss over 
all predictions 

or a cost (or error) function:
 There are many approaches/methods 


        ),(, wxfyL

          . ),(,
1

)(
1





N

i
i

fyL
N

R wxw
i

)()()( www QRC 
Constraint





N

i
i

fy
N

ER
1

2)),((
1

)()( wxww
i

A common
Risk function



Pushpa Bhat                                                            DPF2015     

 Density estimation, in principle, is simple and straightforward.
 Histogramming: 
 Histogram data in M bins in each of the d feature variables

Md bins   Curse Of Dimensionality

 In high dimensions, we would need a huge number of data points or most 
of the bins would be empty leading to an estimated density of zero. 

 But, the variables are generally correlated and hence tend to be 
restricted to a sub-space  Therefore, Intrinsic Dimensionality  << d

 There are more effective methods for density estimation
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