ATLAS Results in the Search for a Charged Higgs Boson

<u>Allison McCarn</u> (University of Michigan)

Motivation

- The existence of a charged Higgs boson (H[±]) is predicted in Two Higgs Doublet Models.
 - The Higgs sector of the MSSM is a type-II 2HDM.

Production:

At the LHC, the dominant production mode of a light H^{\pm} ($m_{H\pm} < m_{top}$) is $t \rightarrow H^{\pm} b$.

A heavy H^{\pm} ($m_{H\pm} > m_{top}$) could be produced by gb or gluon fusion.

Example Tree-Level Diagrams

Charged Higgs Production & Decay

- MSSM scenarios can be described by two parameters, m_{H±} and tan(β).
- Searches for $H^{\pm} \rightarrow \tau v$ are especially sensitive for high tan(β) and relatively low $m_{H^{\pm}}$.
 - The production cross section increases with center-of-mass energy, so increases in energy extend the search's sensitivity to higher m_{H±}.

Analysis Overview

• The channels included in this search are:

 $t\bar{t} \to [H^+b] \ [W^-\bar{b}] \to [(\tau^+_{had-vis} + \nu_\tau)b] \ [q\bar{q}\bar{b}]$ $g\bar{b} \to [\bar{t}] \ [H^+] \to [q\bar{q}\bar{b}] \ [\tau^+_{had-vis} + \nu_\tau]$ $gg \to [\bar{t}b] \ [H^+] \to [(q\bar{q}\bar{b})b] \ [\tau^+_{had-vis} + \nu_\tau]$

Analysis Overview

• The channels included in this search are:

$$t\bar{t} \to [H^+b] \ [W^-\bar{b}] \to [(\tau^+_{\text{had-vis}} + \nu_\tau)b] \ [q\bar{q}\bar{b}]$$
$$g\bar{b} \to [\bar{t}] \ [H^+] \to [q\bar{q}\bar{b}] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$
$$gg \to [\bar{t}b] \ [H^+] \to [(q\bar{q}\bar{b})b] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$

• The Background contributions are split up by the origin of the τ in the event:

- all jet $\rightarrow \tau$ fakes (data-driven)
- events with true τ (embedding)
- events with lepton $\rightarrow \tau$ fakes (MC)

Analysis Overview

• The channels included in this search are:

$$t\bar{t} \to [H^+b] \ [W^-\bar{b}] \to [(\tau^+_{\text{had-vis}} + \nu_\tau)b] \ [q\bar{q}\bar{b}]$$
$$g\bar{b} \to [\bar{t}] \ [H^+] \to [q\bar{q}\bar{b}] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$
$$gg \to [\bar{t}b] \ [H^+] \to [(q\bar{q}\bar{b})b] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$

- \bullet The Background contributions are split up by the origin of the τ in the event:
 - all jet $\rightarrow \tau$ fakes (data-driven)
 - events with true τ (embedding)
 - events with lepton $\rightarrow \tau$ fakes (MC)
- The final discriminating variable:

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau_{\rm had-vis},{\rm miss}})}$$

is related to transverse mass of W boson for background events (with W $\rightarrow \tau v$), and H⁺ boson for signal events

7

Analysis Overview

• The channels included in this search are:

$$t\bar{t} \to [H^+b] \ [W^-\bar{b}] \to [(\tau^+_{\text{had-vis}} + \nu_\tau)b] \ [q\bar{q}\bar{b}]$$
$$g\bar{b} \to [\bar{t}] \ [H^+] \to [q\bar{q}\bar{b}] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$
$$gg \to [\bar{t}b] \ [H^+] \to [(q\bar{q}\bar{b})b] \ [\tau^+_{\text{had-vis}} + \nu_\tau]$$

- \bullet The Background contributions are split up by the origin of the τ in the event:
 - all jet $\rightarrow \tau$ fakes (data-driven)
 - events with true τ (embedding)
 - events with lepton $\rightarrow \tau$ fakes (MC)
- The final discriminating variable:

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau_{\rm had-vis},{\rm miss}})}$$

is related to transverse mass of W boson for background events (with W $\rightarrow \tau v$), and H⁺ boson for signal events

Backgrounds: $jet \rightarrow \tau$

This method relies on four categories of hadronically decaying τ :

- \checkmark 'Loose': passes all object selection (pT, η, trigger-matched), but not τ identification cut.
- ✓ 'Tight': passes 'Loose' selection and τ identification cut
- ✓ '**Real**': a reconstructed object passing 'loose' or 'tight' selection that is a τ .
- ✓ 'Misidentified': a reconstructed object passing 'loose' or 'tight' selection that is a jet.

9

Backgrounds: $jet \rightarrow \tau$

✓ p_r is measured in simulation and calibrated to data.
 ✓ p_m is measured in a W+jets control region in data (shown).

Both are parameterized as a function of $\tau p_{T_{.}} \tau \eta$, and N_{track}^{iso} .

Backgrounds with True τ_{had} : τ_{had} Embedding

tt events decaying to " τ_{had} +jets" cannot be selected in data without significant signal contamination.

µ+jets events can be selected in data instead, with high purity and low signal contamination.

The τ_{had} embedding method uses μ +jets data events, where the μ is replaced with a simulated τ_{had} .

Final Results

Sample	Low-mass H^+ selection	High-mass H^+ selection
True τ_{had} (embedding method)	$2800 \pm 60 \pm 500$	$3400 \pm 60 \pm 400$
Misidentified jet $\rightarrow \tau_{\rm had} vis$	$490 \pm 9 \pm 80$	$990 \pm 15 \pm 160$
Misidentified $e \to \tau_{had} vis$	$15 \pm 3 \pm 6$	$20\pm 2\pm 9$
Misidentified $\mu \to \tau_{\rm had} vis$	$18\pm 3\pm 8$	$37\pm5\pm8$
All SM backgrounds	$3300 \pm 60 \pm 500$	$4400 \pm 70 \pm 500$
Data	3244	4474
$H^+ (m_{H^+} = 130 \mathrm{GeV})$	$230 \pm 10 \pm 40$	
$H^+ \ (m_{H^+} = 250 \text{GeV})$		$58 \pm 1 \pm 9$

Final yields and distributions are consistent with the Standard Model.

Cross Section Limits

Specific model independent limits are extracted on the products of branching ratios (low $m_{H\pm}$) or production cross sections and branching ratios (high $m_{H\pm}$).

MSSM Interpretations

- Limits are also interpreted in various MSSM scenarios. Shown here is the MSSM benchmark scenario mh-mod+.
- mh-mod+ is a modification of the previously standard MSSM mh-max scenario, designed to increase the amount of parameter space consistent with 'h' as the observed Higgs boson.

More information on benchmark scenarios: [arXiv:1302.7033]

Summary

- The latest ATLAS search for a charged Higgs boson sets exclusion limits in the ranges of $m_{H\pm}$ = 80-160 GeV and $m_{H\pm}$ = 180-1000 GeV.
- For the lower mass range, this places stringent limits on many MSSM benchmark scenarios.
- With the higher run-2 center-of-mass energy at the LHC, the sensitivity of the search at high mass will increase!

Backup

Trigger Scale Factors

functions fit to the efficiency curves of data and simulation for the τ and E_T^{miss} triggers, separately for 1- and 3-prong τ .

JHEPO3 (2015) 088 Backgrounds: true τ embedding

 These show the reduction of systematic uncertainties when using embedding instead of the usual simulation.

Backgrounds: true τ embedding

- No trigger is available in embedded samples: trigger efficiency binned in pT of the τ and E_{T}^{miss} (taken from data) applied to events
- Normalization is taken from data:

$$N_{\tau} = N_{\text{embedded}} \cdot (1 - c_{\tau \to \mu}) \frac{\epsilon^{\tau + E_{\text{T}}^{\text{miss}} - \text{trigger}}}{\epsilon^{\mu - \text{ID}, \text{trigger}}} \cdot \mathcal{B}(\tau \to \text{hadrons} + \nu)$$
wrongly embedded
$$W \to \tau \to \mu \text{ events}$$
muon trigger and
reconstruction efficiencies

- Systematic uncertainties:
 - vary muon isolation to study effect of additional QCD
 - vary embedding settings to estimate potential biases introduced by embedding parameter settings
 - τ in final event comes from simulation: TES, τ ID systematic uncertainties
 - normalization systematics

Backgrounds: jet $\rightarrow \tau m_{\tau}$ tail

• Due to low statistics in the tail of the distribution, the background estimation is improved by the use of a power log function extrapolation.

Systematic Uncertainties

Source of uncertainty	Low-mass H^+ selection	High-mass H^+ selection
Muon selection	< 1%	< 1%
Misidentified $\tau_{\rm had} vis$	5.6%	5.7%
Fitting function	2.1%	1.8%
Trigger definition	< 1%	< 1%
Residual correlations	1.4%	3.2%
$\tau_{\rm had} vis$ energy scale	< 1%	< 1%

Source of uncertainty	Low-mass H^+ selection	High-mass H^+ selection	Source of uncertainty	Normalisation uncertainty
True $\tau_{\rm had}$			Low-mass H^+	
Embedding parameters	3.0%	1.8%	Generator model $(b\bar{b}W^-H^+)$	9%
Muon isolation	0.3%	2.3%	Generator model $(b\bar{b}W^+W^-)$	9%
Parameters in normalisation	2.0%	2.0%	$t\bar{t}$ cross section	6%
$\tau_{\rm had} vis$ identification	2.2%	2.0%	Jet production rate (SM and H^+) (QCD scale)	11%
$\tau_{\rm had} vis$ energy scale	4.0%	3.6%	High-mass H^+	
$\tau_{\rm had} vis + E_{\rm T}^{\rm miss}$ trigger	8.3%	8.3%	Generator model (H^+)	2-9%
$\text{Jet} \to \tau_{\text{had}} vis$			Generator model (SM)	8%
Statistical uncertainty on $p_{\rm m}$	2.0%	3.4%	$t\bar{t}$ cross section	6%
Statistical uncertainty on $p_{\rm r}$	0.5%	0.5%	Jet production rate (H^+) (QCD scale)	$1{-}2\%$
Jet composition	1.1%	1.9%	Jet production rate (SM) (QCD scale)	11%
$\tau_{\rm had} vis$ identification	0.8%	0.6%	H^+ production (4FS vs 5FS)	3 - 5%
e/μ contamination	0.5%	0.7%		'

• Summary of systematic uncertainties.

Nuisance Parameters

21

MSSM Interpretations (low mass)

Similar exclusion is seen for these additional scenarios at low $m_{H\pm}$. Additionally, the low-mH scenario is excluded for all parameter space where it is valid.

MSSM Interpretations

23