

Rare electroweak B decays at LHCb

Espen Eie Bowen

on behalf of the LHCb collaboration

4th August 2015

Rare electroweak B decays

- Rare FCNC processes are only possible via loop diagrams in SM
 - Highly suppressed
- New, heavy particles in SM extensions can enter the loop and modify observables (*B* and angular distributions)

The LHCb experiment

- ▶ LHCb is the dedicated heavy flavour physics experiment at the LHC
- Its primary goal is to look for indirect evidence of new physics in CP violation and rare decays of beauty and charm hadrons
- This requires:
 - 1. Excellent tracking
 - momentum resolution($\Delta p/p \sim 0.4\% 0.6\%$)
 - impact parameter resolution ($\sigma_{IP} \sim 20 \ \mu m$)
 - primary vertex resolution (13 μ m in *x* and *y* and 71 μ m in *z*)
 - 2. Excellent decay time resolution ($\sigma_{\tau} \sim 45$ fs)
 - 3. Excellent particle identification

 $B^0_{(s)} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

[PLB 743 (2015) 46]

$$B^0_{(s)} \to \pi^+ \pi^- \mu^+ \mu^-$$

• Candidates must have $m_{\pi^+\pi^-}$ in the range 0.5-1.3 GeV/ c^2

 $B^{0}_{(s)} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}$

- Expected to proceed mainly through $B_s^0 \rightarrow f_0(980)\mu^+\mu^$ and $B^0 \rightarrow \rho(770)^0\mu^+\mu^-$
- ► Current SM predictions of *B* for both vary from 10⁻⁷ to 10⁻⁹ [PRD 79 (2009) 014013] [PRD 81 (2010) 074001] [PRD 80 (2009) 016009]
- Neither decays previously observed
- ► $B^0 \rightarrow J/\psi (\rightarrow \mu \mu) K^{*0} (\rightarrow K \pi)$ used as normalisation mode
- ► $B^0_{(s)} \rightarrow J/\psi \pi^+ \pi^-$ used to help fit modelling and to optimise PID requirements
- Solution Full 3.0 fb $^{-1}$ of Run I data

 \bigcirc

 $B^0_{(s)} \to \pi^+ \pi^- \mu^+ \mu^-$

► Third uncertainty due to \mathcal{B} ($B^0 \rightarrow J/\psi K^{*0}$) from BaBar [PRD 76 (2007) 092004], Belle [PLB 538 (2002) 11] and Belle [PRL 79 (1997) 4533]

$$0.5 < m_{\pi^+\pi^-} < 1.3 \, \text{GeV}/c^2$$

 $\triangleright \sim 55 \ B_s^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays and

 $\sim 40 B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays observed

First observation of $B_s^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ with 7.2 σ

 $\begin{aligned} \mathcal{B}(B^0_s \to \pi^+ \pi^- \mu^+ \mu^-) &= (8.6 \pm 1.5 (\text{stat}) \pm 0.7 (\text{syst}) \pm 0.7 (\text{norm})) \times 10^{-8} \\ \mathcal{B}(B^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (2.11 \pm 0.51 (\text{stat}) \pm 0.15 (\text{syst}) \pm 0.16 (\text{norm})) \times 10^{-8} \end{aligned}$

 $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$

 $\Lambda_h^0 \to \Lambda \mu^+ \mu^-$

[JHEP 06 (2015) 115]

- ► $b \rightarrow s\ell^+\ell^-$ transition in spin- $\frac{1}{2}$ system
 - Improve the understanding of the helicity structure
- Λ decays are reconstructed in the mode $\Lambda \rightarrow p\pi^-$
- $\Lambda^0_b \rightarrow J/\psi \Lambda$ used as a normalisation mode
- S Full $3.0 \, \text{fb}^{-1}$ of Run I data
 - \sim 300 observed events

Branching fraction

[JHEP 06 (2015) 115]

- ▶ Measurement performed in several *q*² bins
- ► Absolute differential branching fraction obtained by multiplying by $\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi \Lambda)$
- Measurements compatible with SM at high-q² but lie below the predictions at low-q² [PRD 87 (2013) 074502]

$$\begin{split} &15 < q^2 < 20 ~ \mathrm{GeV^2/c^4} \\ & \frac{\mathrm{d}\mathcal{B}(\Lambda_b^0 \to \Lambda \mu^+ \mu^-)}{\mathrm{d}q^2} = (1.18^{+\,0.09}_{-\,0.08}(\mathrm{stat}) \pm 0.03(\mathrm{syst}) \pm 0.27(\mathrm{norm})) \times 10^{-7} ~(\,\mathrm{GeV^2/c^4})^{-1} \end{split}$$

Angular analysis

[JHEP 06 (2015) 115]

- Measure forward-backward asymmetry in both dimuon and *p*π systems
- Only in q² bins with statistically significant yields
- A^h_{FB} in good agreement with predictions of the SM while A^ℓ_{FB} lies consistently above the predictions [arXiv:1401.2685]

$$\begin{split} 15 < q^2 < 20 ~ \text{GeV}^2 / c^4 \\ A_{\text{FB}}^\ell &= -\ 0.05 \pm 0.09(\text{stat}) \pm 0.03(\text{syst}) \\ A_{\text{FB}}^h &= -\ 0.29 \pm 0.07(\text{stat}) \pm 0.03(\text{syst}) \end{split}$$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• Decay fully described by q^2 and three angles $\vec{\Omega} = (\cos \theta_l, \cos \theta_K, \phi)$

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}}\Big|_{\rm P} = \frac{9}{32\pi} \Big[\frac{3}{4}(1 - F_{\rm L})\sin^2\theta_K + F_{\rm L}\cos^2\theta_K + \frac{1}{4}(1 - F_{\rm L})\sin^2\theta_K\cos2\theta_l - F_{\rm L}\cos^2\theta_K\cos2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos2\phi + S_4\sin2\theta_K\sin2\theta_l\cos\phi + S_5\sin2\theta_K\sin\theta_l\cos\phi + \frac{4}{3}A_{\rm FB}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi + S_8\sin2\theta_K\sin2\theta_l\sin\phi + S_9\sin^2\theta_K\sin^2\theta_l\sin\phi + S_9\sin^2\theta_K\sin^2\theta_l\sin\phi + S_9\sin^2\theta_K\sin^2\theta_l\sin\phi}$$

- ► $F_{\rm L}$, $A_{\rm FB}$, S_i combinations of K^{*0} amplitudes which depend on the Wilson coefficients $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$ and the form factors
- Additional sets of observables, for which the leading form-factor uncertainties cancel, can be built from F_L and S_3 to S_9

φ

 2ϕ

• e.g.
$$P'_{4,5} = S_{4,5} / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

Previous analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb

- ► Two previous analyses using 1 fb⁻¹
- 1. Good agreement with SM predictions [JHEP 07 (2011) 067] for observables measured in [JHEP 08 (2013) 131]
- 2. Less form-factor dependent observables (P'_i) introduced in [PRL 111, 191801 (2013)]
 - ▶ 3.7 σ local deviation from SM prediction [JHEP 05 (2013) 137] in P_5'

Previous analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb

- ► Two previous analyses using 1 fb⁻¹
- 1. Good agreement with SM predictions [JHEP 07 (2011) 067] for observables measured in [JHEP 08 (2013) 131]
- 2. Less form-factor dependent observables (P'_i) introduced in [PRL 111, 191801 (2013)]
 - ► 3.7 σ local deviation from SM prediction [JHEP 05 (2013) 137] in $P_5^{'}$!

Selection

- ► Resonant modes $(B^0 \rightarrow J/\psi K^{*0})$ and $B^0 \rightarrow \psi(2S)K^{*0}$ and peaking backgrounds vetoed with kinematic and PID criteria
- Multivariate classifier used to reduce combinatorial background
 - Kinematic, particle identification and isolation variables used as input
- So Full $3.0 \, \text{fb}^{-1}$ of Run I data

$m_{K\pi\mu\mu}$ distribution

- Signal fit parameters determined from a fit to $B^0 \rightarrow J/\psi K^{*0}$ in data
- Scale factor applied to account for q² dependent effects
- ► Integrated $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ signal yield $N_{\rm sig} = 2398 \pm 57$

Acceptance correction

- Trigger, reconstruction and selection distort the distributions of q^2 , $\cos \theta_\ell$, $\cos \theta_K$, ϕ
- Acceptance parameterised as product of Legendre Polynomials, P_i
- No factorisation is assumed
- ► Coefficients determined from PHSP $B^0 \rightarrow K^{*0}\mu^+\mu^-$ MC using a method of moments approach

$$\varepsilon(\cos\theta_l,\cos\theta_K,\phi,q^2) = \sum_{klmn} c_{klmn} P_k(\cos\theta_l) P_l(\cos\theta_K) P_m(\phi) P_n(q^2)$$

S-wave pollution

- ► K^{*0} reconstructed through decay channel $K^{*0} \rightarrow K^+ \pi^-$
- ► Can also have contribution due to $K^+\pi^-$ in S-wave configuration
 - ➔ 6 additional observables

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^3(\Gamma+\bar{\Gamma})}{d\vec{\Omega}} \bigg|_{S+P} = (1-F_S) \left. \frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^3(\Gamma+\bar{\Gamma})}{d\vec{\Omega}} \right|_P + \frac{3}{16\pi} F_S \sin^2\theta_\ell + S-P \text{ interference}$$

- P-wave observables scaled by factor $(1 F_S)$
- Simultaneous fit performed to $m_{K\pi}$ to constrain F_S
- P-wave modelled with relativistic BW
- S-wave modelled with Lass parameterisation [NPB 296 (1988) 493]

Angular fit

- Analysis performed in several *q*² bins
- First analysis to allow simultaneous determination of all 8 observables
- 4D+1D simultaneous fit to $m_{K\pi\mu\mu}$, $\cos \theta_{\ell}$, $\cos \theta_{K}$, ϕ and $m_{K\pi}$
- Projections shown for q² bin 1.1 < q² < 6.0 GeV²/c⁴
- Feldman-Cousins method used to ensure correct coverage [PRD 57 (1998) 3873]

Systematics

- Many sources of systematic uncertainty are investigated
 - Acceptance correction (≤ 0.01 -0.02)
 - 1. Limited size of simulation sample
 - 2. Residual data-simulation differences
 - 3. Parameterisation of the efficiency function
 - 4. Evaluation at a fixed point in q^2
 - Peaking backgrounds (\leq 0.01-0.02)
 - 1. $B_s^0 \rightarrow \phi \mu^+ \mu^-$
 - 2. $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$
 - 3. $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ double mis-id
 - PDF modelling (≤ 0.01)
 - 1. Signal models for $m_{K\pi\mu\mu}$ and $m_{K\pi}$
 - 2. Background angular models
- All estimated using high statistics pseudo-experiments
- Measurement is statistically dominated

Results - F_L , S_3 , S_4 , S_5

[LHCb-CONF-2015-002]

Results - A_{FB} , S_7 , S_8 , S_9

Results - P'_5

- Deviation at level of 2.9σ in both bins [4.0,6.0] and [6.0,8.0] GeV²/c⁴
- Naive combination results in significance of 3.7σ
- Discrepancy in P'₅ confirmed!
- Compatible with 1 fb⁻¹ analysis [PRL 111, 191801 (2013)]

Results - P'_5

- Deviation at level of 2.9σ in both bins
 [4.0,6.0] and [6.0,8.0] GeV²/c⁴
- Naive combination results in significance of 3.7σ
- Discrepancy in P'₅ confirmed!
- Compatible with 1 fb⁻¹ analysis [PRL 111, 191801 (2013)]

Conclusion

- Rare decays are powerful probes in the search for NP
- ▶ Presented first observation of $B_s^0 \to \pi^+\pi^-\mu^+\mu^-$ and first evidence of $B^0 \to \pi^+\pi^-\mu^+\mu^-$
- $\blacktriangleright\,$ Presented branching fraction and angular analysis of $\Lambda^0_b \! \to \Lambda \mu^+ \mu^-$
- ▶ Presented full angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - Solution P_5' confirmed!

Further LHCb talks @ DPF

Michael Koplin, $B_s^0 \rightarrow \phi \mu^+ \mu^-$ at LHCb, next talk

Tobias Tekampe, First measurement of the differential branching fraction and CP asymmetry of the $B^+ \to \pi^+ \mu^+ \mu^-$ decay, tomorrow

With Run II beginning, exciting times are ahead!

1

-

1

and a

[JHEP 06 (2015) 115]

2

r^2 interval [GeV ² / c^4]	Total signal yield	Significance
0.1 – 2.0	16.0 ± 5.3	4.4
2.0 - 4.0	4.8 ± 4.7	1.2
4.0 - 6.0	0.9 ± 2.3	0.5
6.0 - 8.0	11.4 ± 5.3	2.7
11.0 – 12.5	60 ± 12	6.5
15.0 - 16.0	57 ± 9	8.7
16.0 - 18.0	118 ± 13	13
18.0 - 20.0	100 ± 11	14
1.1 – 6.0	9.4 ± 6.3	1.7
15.0 - 20.0	276 ± 20	21

4

 $\Lambda^0_b\!\to \Lambda\mu^+\mu^-$

[JHEP 06 (2015) 115]

 $B^0_{(s)} \rightarrow \pi^+\pi^-\mu^+\mu^-$

[PLB 743 (2015) 46]

