Gravitation astrometric tests in the internal Solar System: the Astrometric Gravitation Probe mission goals

M. Gai, A. Vecchiato, A. Riva, D. Busonero, M.G. Lattanzi Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo]

High precision astrometry as a tool for Fundamental Physics

Dyson-Eddington-Davidson experiment (1919)

Negative sample from original plates [1920 paper]

First test of General Relativity by light deflection nearby the Sun

Epoch (a): unperturbed direction of stars S1, S2 (dashed lines)

Epoch (b): apparent direction as seen by observer (dotted line)

Micro-arcsec astrometry:

1 arcsec $(1'') \cong 5 \mu rad$

1 micro-arcsec (1 μ as) \cong 5 prad

Spacetime curvature around massive objects

Light deflection ⇔ Apparent variation of star position, related to the gravitational field of the Sun

⇔ ASTROMETRY

Classical GR test: Mercury's perihelion precession

Total observed precession of Mercury: 574 arc-seconds per century

Newtonian contribution: 531 arc-seconds per century

General Relativity term: 43 arc-seconds per century

• The effect of the perihelion shift excess depends on a combination of both γ and β (and other PPN parameters).

$$\Delta\omega = \frac{6\pi m}{a(1-e^2)} \left[\frac{1}{3} (2+2\gamma-\beta) + f(\alpha_1,\alpha_2,\alpha_3,\zeta_2,J_2) \right]$$

Aftermath of 1919 eclipse experiment...

Repeated throughout most of XX century

Precision achieved: ~10%

[A. Vecchiato et al., MGM 11 2006]

Authors	Year	Deflection ["]
Dyson & al.	1920	$\boldsymbol{1.98 \pm 0.16}$
Dodwell & al.	1922	$\boldsymbol{1.77 \pm 0.40}$
Freundlich & al.	1929	$\textbf{2.24} \pm \textbf{0.10}$
Mikhailov	1936	2.73 ± 0.31
van Biesbroeck	1947	2.01 ± 0.27
van Biesbroeck	1952	$\boldsymbol{1.70 \pm 0.10}$
Schmeidler	1959	$\textbf{2.17} \pm \textbf{0.34}$
Schmeidler	1961	1.98 ± 0.46
TMET	1973	1.66 ± 0.19

Limiting factors:

• Need for natural eclipses

Short exposures, high background

• Atmospheric turbulence

Large astrometric noise

Portable instruments

Limited resolution, collecting area

Freundlich's attempts to verify relativity theory (I)

...and previous, less fortunate attempts

- End of 1911–Oct. 1912: Examination of available plate data from solar eclipse expeditions for evidence of light deflection in the sun's gravitational field; plates not sharp enough.
- 1912-1913: Comments on possible daytime observations of stars near the sun; but too much scattered light.
- 1913: Analyses of binary stars: Test of the axiom c = constant of the special theory of relativity versus RITZ's emission theory of light.
- 1914: Analysis of Fraunhofer-line measurements by Evershed (1913) and Fabry & Buisson [1910] with the view toward possible gravitational redshift; Results: redshift is present. But already in 1914 Schwarzschild publishes new data that rather speak against gravitational redshift.
- 1914: Expedition to the Crimea exclusively to verify light deflection during a solar eclipse; due to the outbreak of war, the members of the expeditions are taken into custody and their instruments confiscated.

[D. Dravins, 2012]

Erwin Finlay Freundlich (1885-1964) worked to experimentally verify the predictions from Einstein's theory of relativity and the effects of gravity on light.

Klaus Hentschel: Erwin Finlay Freundlich and Testing Einstein's Theory of Relativity, Archive for History of Exact Sciences 47, 243 (1994)

Current experimental results on light deflection...

Hipparcos

Different observing conditions: *global astrometry*, estimate of full sky deflection on survey sample

Precision achieved: 3e-3

Cassini

Radio link delay timing, $\delta v/v \sim 1e-14$

(similarly for Viking, VLBI: Shapiro delay effect, "temporal" component)

[B. Bertotti et al., Nature 2003]

Precision achieved: 2e-5

Why testing GR through $\gamma(+\beta)$?

Current experimental bounds:

consistent with GR

$$\left|\gamma - 1\right| \le 2 \times 10^{-5}$$

$$|\beta - 1| \le 1 \times 10^{-4}$$

Parametrised Post-Newtonian (PPN) formulation allows comparison of competing gravitation theories

Deviation range expected:

$$10^{-5} - 10^{-7}$$

Living Reviews in Relativity, C.F. Will (2001)

ESA mission – launched Dec. 19th, 2013

Stellar Astrophysics

Star Formation History of the Milky Way Galactic Structure

Binaries and Brown Dwarfs

Extrasolar Planets

Expected precision on individual bright stars: 10÷30 µas

Solar System

Physics

Reference Frame

Precision astrometry for Fundamental Physics - Gaia

- Light deflection
 - Monopole deflection from the Sun: $\sigma_{\gamma} \sim 10^{-6}$ (systematic errors remain a difficult challenge)
 - ► First detection of a number of subtle deflection effects from the planets: monopole, quadrupole, gravitomagnetic
- 2. Motion of the solar system: perihelion and node precessions, quadratic deviations in the mean longitudes

$$\sigma_{\beta} \sim 10^{-3}$$
, $\sigma_{J_2^{\text{Sun}}} \sim 10^{-7}$, $\sigma_{\dot{G}/G} \sim 10^{-12} \, \text{yr}^{-1}$, $\sigma_{\eta} \sim 10^{-3}$

- 3. Local Lorentz Invariance: Gaia is a kind of Michelson-Morley experiment
- 4. Pattern matching in proper motions and epoch astrometry:
 - Solar system acceleration $\sigma_a/a < 0.1$
 - Improved estimates of the stochastic background of primordial low frequency gravitational waves
- Astrometric information for the optical components of some objects that are important for other relativistic tests

- **A** = **Apparent star position measurement**
- G = Testing gravitation in the solar system
 - 1) Light deflection close to the Sun
 - 2) High precision dynamics in Solar System
- P = Medium size space mission ESA M4 (2014)

AGP:

Astrometric Gravitation Probe

Design driver: light bending around the Sun @ µas fraction

Previously proposed for ESA M3 (2010) as GAME – Gravitation Astrometric Measurement Experiment

AGP vs. ESA Cosmic Vision "Grand Themes"

	Cosmic Vision Theme	AGP
1	What are the conditions for planet formation and the emergence of life?	10%
2	How does the Solar System work?	30%
3	What are the fundamental physical laws of the Universe?	50%
4	How did the Universe originate and what is it made of?	10%

Next ESA Call for Medium size mission: M5 - 2016

Context in Fundamental Physics : Standard model and General Relativity

Particle physics: Standard Model

3 forces, families of fermions and bosons

Very well tested, but... residual problems:

- ☐ Hierarchy problem: why is gravity so weak compared to the other forces?
- Unification of gravity with electroweak and strong forces?
- □ ΛCDM: what are dark energy and dark matter?

Extra scalar field theories coupled to matter/CDM (dilaton, chameleon...)

Modified gravity theories: scalartensor theories; f(R); ISL, Yukawa

Predicted deviations from General Relativity may be measurable at laboratory / Solar System scale

AGP Science goal - 1

Characterisation of weak field gravity in the Solar System

- Deflection of light in the solar system
- Non-linearity of gravity, preferred frame
- Relativistic effects of oblate and moving giant planets
- Solar system dynamics [High precision ephemerides]
- Detection limit of dilaton
- Limits for Lorentz invariance
- Preferred frame detection
- Anisotropy of light deflection

Exclusion / validation of alternative theories of gravity

AGP science goal - 2

Light bending to 10⁻⁷ – 10⁻⁸ level

- \rightarrow Final collective accuracy (α , δ): 0.1 to 0.01 μ as
- \rightarrow Individual precision: $\sigma_{\text{star}} \sim 100$ to 10 μ as

1 μ as accuracy (α , δ) planet

Light deflection effects due to oblate giant planets: Jupiter and Saturn

Monopole and quadrupole (till now undetected) terms of asymmetric mass distribution

Measure of the amount of quadrupole deflection as test of GR

FIG. 2: Initial uniform star field (left). Apparent shift of distant light in the standard general relativity case (right).

Upper limits on Lorentz-violating SME parameters

GR: isotropic effect

Effects of Lorents invariance violation associated to **anisotropy of light bending** may be detected

[Tso and Bailey, Phys. Rev. D, 2011]

FIG. 3: Anisotropic apparent shift of star field due to the $\overline{s}_{xx} - \overline{s}_{yy}$ coefficients (left) and the \overline{s}_{xy} coefficients (right). AGP The local x coordinate runs horizontally and y is vertical.

AGP scientific requirements – driven by light deflection case

- 1) Measurement of light bending to 10⁻⁷-10⁻⁸
- 2) Non-linearity of gravity to 10⁻⁶

Measurement precision required:

Final accuracy: 0.1 – 0.01 µas for star sample and ~1 µas for Mercury

Differential astrometry: between perturbed and un-perturbed fields

→ astrophysical and PSF errors control

Mitigation: average ~10⁶ measurements

→ individual σ ~100 to 10 μas
good metrology and calibration techniques

AGP concept: Dyson-Eddington-Davidson experiment (1919)

A space mission in the visible range to achieve

- long permanent artificial eclipses
- no atmospheric disturbances, low noise

Differential measurement for systematic error control

Epoch $1\leftrightarrow 2$: deflection modulation switched between field pairs

Multiple field superposition + epoch modulation

Two epochs:
differential
measurement of
deflection on stellar
sample

astrometric calibration on undeflected fields

Instrument errors mostly common mode to all fields

Double differential measurement

Basic equations referred to stars in Fields 1, 2, 3, 4; Epochs 1, 2

$$[\xi(F1;E1) - \xi(F2;E1)] - [\xi(F1;E2) - \xi(F2;E2)] = \delta\psi(F1,F2) + \Delta\beta(E1;E2)$$

$$[\xi(F3;E2) - \xi(F4;E2)] - [\xi(F3;E1) - \xi(F4;E1)] = \delta\psi(F3,F4) - \Delta\beta(E1;E2)$$

Compensation among measurements of systematic error $\Delta\beta$

$$\delta\psi(F1, F2) + \delta\psi(F3, F4) = [\Delta\xi(F1, F2; E1) - \Delta\xi(F1, F2; E2)] + [\Delta\xi(F3, F4; E2) - \Delta\xi(F3, F4; E1)]$$

Photon limited monitoring of base angle β variation

$$\Delta\beta(E1;E2) \cong [\Delta\xi(F1,F2;E1) - \Delta\xi(F1,F2;E2)] + [\Delta\xi(F3,F4;E1) - \xi(F3,F4;E2)]$$

⇒ Rationale for simultaneous Sun-ward + Out-ward observations

Convenient fields: Galactic ∩ Ecliptic plane

High stellar density regions:

intersection of
Galactic and
Ecliptic planes,
toward Galactic
centre / anti-centre

Mission profile

Sun-synchronous orbit, 1000 km elevation ⇒ no eclipse 105 minute orbit period

100% nominal observing time

Stable solar power supply and thermal environment ⇒ instrument structural stability

Field rotation around the Sun synchronous with orbital motion

System rationale:

preserve satellite orientation vs. Earth (stable thermal environment)

Science rationale:

switch stars between channels (strenghten calibration)

Mission performance on light deflection

Performance factors: ~diameter^2, (field of view)^{3/2}, time^{1/2}

...but performance on orbits scales as time $^{3/2}$: factor >2

AGP Mission profile vs. ESA M4 Call specifications

Baseline launcher: Vega

Sun-Synchronous orbit (SSO, i=99.48°), elevation: 1000 (1500) km

Useful mass (satellite + payload): 1140 (1000) kg

Spacecraft dry mass (incl. payload and propulsion systems) ~ 800 kg

Payload mass ~ 300 kg

In-orbit operations 3-5 years

Science telemetry: S band (~600 kbps); X band (20 – 200 Mbps)

Telescope primary diameter: 1.15 m

Effective Fizeau pupil diameter: 1.10 m

Payload envelope: 2.1 m diameter x 1.5 m height

Detector: CCD mosaic @ -20 C

Main science focal plane: 8 x 4 CCDs - 2kx4k

Auxiliary (pointing) focal plane: 1 x 2 CCDs - 2kx4k

Laser corner cube for high precision satellite ranging? (F)

Corona polarimetry at high spatial resolution? (I)

Conclusions

High precision astrometry: tool for Fundamental Physics

Discrimination of gravitation theories on Solar System scale

Differential measurement concept: improve result reliability

Implementation concept: astrometry + coronagraphy

Space mission design consolidated (to be improved)

Contributions on science case and mission development welcome!