

The LBNE Prototype at CERN

Context

★ Context

- Only found out I was giving this talk yesterday...
- Entire day taken up by meetings with the student horde

★ Consequently the slides are a bit rough around the edges...

This Talk

★ This Talk:

- Introduction
 - The LBNE FD concept
 - LBNE → LBNF/ELBNF
- Current R&D
 - 35-ton prototype
- CERN prototype
 - Key Aims
 - Current concept
 - Status
- European perspective
- ★ Thanks to: Michelle Stancari, Mark Convery, Thomas Kutter, Jim Stewart

Focus on high-level issues

From LBNE → ELBNF

★ The LBNE TPC Design

- Single-Phase ICARUS-inspired design
- Scale up by a factor ~50:
 - Industry "standard" membrane cryostat
 - Modular wire plane readout "Anode Plane Assemblies" APAs
 - Analogue and digital electronics inside cryostat
 - APAs: wrapped reading out two drift volumes
 - Wire mesh cathode planes -185kV
 - FR4 PCB/copper Field Cage

cross section view of the TPC components inside the cryostat

LBNE APAs

★ LBNE CDR APA Design

- Stacked 2.5m x 7m modules
- Three readout wire planes
 - X (vertical) : collection
 - U (45°) Induction
- Wire pitch ~4.5 mm
- Readout at ends of APAs

★ Questions

- Impact of wrapping
 - Ambiguities/disambiguation
- Gaps between APA modules
 - Impact on physics
- Optimal wire spacing/pitch/angle
 - Impact on physics

From Concept Reality

35 ton Prototype

- Crucial test of LBNE TPC concept
- Installed at Fermilab
- 2m x 2m x 2m TPC
- Two drift volumes (long/short)
- 4 APA modules

35 ton Prototype Goals

★ Phase-I (completed early 2014)

- Validation of cryostat design/performance
- Demonstrate argon purity required for physics (Phase-II)
- No TPC

Liquid Argon Volume Exchanges

★ Phase-II (~second quarter 2015)

- Crucial test of LBNE TPC concept
- Exposed to cosmic-rays
- First test of LAr reconstruction
- Evaluate physics performances using cosmic rays
- Not a beam test

R&D Issues Addressed

★ 35 ton Prototype addresses many R&D issues

- APA performance:
 - wrapping ambiguities,
 - gaps, tracks crossing APAs,
 - energy resolution
- Photon detector performance:
 - event time resolution
 - photons/MeV
- Electronics/DAQ performance:
 - Signal/Noise with cold pre-amp and ADC
 - triggerless operation
- Cryostat performance:
 - Argon purity
 - acoustic noise
- FR4 printed-circuit field cage performance.

All crucial to demonstrating LBNE TPC concept

LBNE Prototype at CERN

Single Phase Option for ELBNF

- **★** The road to a single-phase ELBNF FD...
 - ICARUS
 - Established single-phase concept
 - Demonstrated long-term operation/stability
 - 35 ton prototype
 - Validate novel aspects of LBNE concept
 - Experience ⇒ motivate design improvements
 - What Next?

- ★ Key questions
 - TRL: Is this enough to "launch" large ELBNF FD?
 - Maybe, but risk…
 - Do we understand the performance sufficiently to control systematic uncertainties?
 - Almost certainly not
- → "LBNE" prototype at the CERN Neutrino Platform addresses these issues

Single Phase Prototype at CERN

★ Eol

- "Expression of Interest for a Full-Scale Detector Engineering Test and Test Beam Calibration of a Single-Phase LAr TPC" submitted to SPSC in October
 - 186 authors, 43 institutes, 6 countries (including Italy, Switzerland, UK)
 - from LBNE, LBNO and ICARUS collaborations
- SPCS invites technical proposal ~spring/summer 2015

★ Status

- Detailed plans/design still evolving
- Submit technical proposal for June 1st
- Beam late 2017/early 2018 challenging but plausible timeline

Still early days... things are evolving

Goals

★ Main goals of Prototype:

- Full-scale prototype of LBNE-concept for single-phase TPC
 - Address engineering design issues
 - Full validation of concept prior to possible deployment as the initial ELBNF 10 kton FD
- "Calibrate" physics performance:
 - Calibrate performance with know charged particle beam
 - Systematic study of detector response
 - Validate/improve MC simulation, e.g. low-E hadronic showers in Argon

Basic Design: Cryostat

★ Cryostat

- Preferred option is a second cryostat
 - Obvious advantages over sharing single cryostat with twophase prototype

Basic Design: Beam

★ Beam

- Possible desire for two/three beam angles
- Ideally, extending to low energies p<1 GeV/c
 - Highly relevant to second oscillation maximum
- Details need to be worked through based on a more concrete TPC design

Basic Design: TPC

- **★** Evolution from 35 ton prototype
 - Full-scale prototype of LBNE concept
 - Possible TPC/cryostat configuration
 - 3 "LBNE" APAs with two drift regions
 - Biggest challenge beam window ?

Details: APAs

- **★** Intended as a full-scale prototype
- **★** APA design being revisited:
 - Rigidity of 7.0 m x 2.5 m frame
 - Concerns about disambiguation
 - Practical considerations, e.g. transport
- ★ New design "direction"
 - Smaller frame, e.g. 6.0 m x 2.3 m
 - Standard transport, more rigid
 - Wire angle, 45° → 30°
 - Removes ambiguities
- **★**Other considerations
 - Increased cost of electronics
 - More modules, more gaps, impact?

Next Steps

- **★** January 21st discussion at Fermilab
 - Consider preferred options, which will allow
 - Design of beam window
 - Concrete discussions with CERN beam group
- **★** ELBNF meeting at Fermilab 22nd 23rd January
 - Establishment as official ELBNF WG?

European Perspective

★ Full-scale Single Phase Prototype

- Engineering test of ELBNF single-phase TPC option
 - Major step towards construction-ready FD TPC
- Important contribution to ELBNF on "home soil"
- Involvement of 15 European groups (including CERN)
 - Italy, Switzerland, UK
- Need to consider how Europe contributes to:
 - the TPC construction
 - physics programme
- Also need to consider:
 - Funding model for TPC
 - Interaction with ELBNF and double-phase prototype

European Perspective

★ Full-scale Single Phase Prototype

- Engineering test of ELBNF single-phase TPC option
 - Major step towards construction-ready FD TPC
- Important contribution to ELBNF on "home soil"
- Involvement of 15 European groups (including CERN)
 - Italy, Switzerland, UK
- Need to consider how Europe contributes to:
 - the TPC construction
 - physics programme
- Also need to consider:
 - Funding model for TPC
 - Interaction with ELBNF and double-phase prototype