
Software developments for FCC 
physics and experiments 

B. Hegner, CERN 

for the FCC Experiment Software Team

FCC IEEE Workshop 2015

Washington



Driving Considerations

2

• Provide robust software to allow physics studies for CDR in 2018

• Support all FCC-ee, -eh, and -hh communities at the same time

– Requires flexibility for Geometry and Simulation

• Start pragmatically

• As studies progress move to more sophisticated solutions

– Allow components to be replaced later on

• FCC software effort relies on effort of other people

– There is a give and take

– Aim for, but don’t blindly force, synergy with other communities



Early Decisions

3

• Adapt existing solutions from LHC

– Gaudi as underlying framework

– ROOT for I/O

– Geant4 for simulation

– C++ and Python for user analysis

• Adapt software developments from ILC/CLIC

– DD4Hep for detector description 

• Invest in better fast vs. full sim integration

– Geant4 fastsim, Atlfast (ATLAS)

• Invest in proper data model 

– The LHC experiments’ ones are over-engineered

– The ILC/CLIC implementation (LCIO) isn’t state of the art



Gaudi Event Processing Framework

4

• Gaudi is an event-independent data processing framework

– Used by LHCb, ATLAS, and a few smaller experiments

• Based on the concept of a software bus

• Work is split up in interdependent “algorithms” 

• Parallelization effort with “GaudiHive” to take advantage of ever 

increasing hardware parallelization

Input Processing Output



The Power Wall - Importance of Parallelism

5

• In the past speed increase happened

automatically - just wait for your next PC

• That is over now!

• New CPU improvements 

go into parallelization

• Clock speed will not increase 

because of Power consumption:

• Need to adapt our software to this parallel environment right from the start

– Otherwise we waste the computing resources we urgently need 

Power / Frequency

3



FCC Simulation

6

• FCC Software needs to support the studies of multiple detectors

• At different stages different level of detail required

– Smearing vs. fast sim vs. full sim

• FCC choices are

– Delphes (*)

– Fast simulation

– Full simulation with Geant4

• Should all be accessible from within the same framework

(*) http://delphes.hepforge.org



Detector Description

7

Detector Description in LHC experiments is a not-well organized 
environment

• Detectors modeled long ago and expertise largely gone 

• Struggling themselves for the upgrade

• Heterogeneous setups even within experiments

ILC/CLIC efforts triggered the project DD4hep (*)

• Covering simulation, display, alignment in a consistent way

FCC joined these efforts of DD4hep

• Good support by developers!

• Working on first test-detector



Fast Simulation

8

• Goal is to have a combined fast and full simulation

– Decide at the config level where to do what

• (Semi-) automatic extraction of fast simulation parameters from 

full simulation

– To be able to do fast-sim for any detector design

• Though not re-inventing the wheel, 

we are heavily re-designing it



Simulation Status

9

• First development phase was focussed on producing a 

demonstrator

– Using expertise from ATLAS and Geant4 developers

– Chosen approach worked out nicely

– Results now being integrated into Geant4 and Gaudi



Data Model I

10

The FCC requirements for a good data model are not special at all:

• Simplicity 

• Flexibility

• Completeness

• Usable in C++ and Python

Data Models of LHC experiments are proven to work

• Fairly complex, and very detector specific beasts

The ILC community has a simple, but complete data model (LCIO)

• Needs adaption to allow direct ROOT access outside FWK

• Parallelism not part of the design

• Developers interested in extension and one should take advantage of it

 

The proper data model is essential for allowing good results

 Thus it is worth investing here with a new project!



Data Model II

11

• ROOT as first choice for I/O

• No deep object hierarchies

– Wherever possible concrete types

• Simple memory layout

– Employ simple structs instead of fat objects

– Helps with parallelization

• Allow access from Python and C++

– Only loose coupling with event processing framework

• Quick turnaround for improvements

– Employ code generation

• Wrote a demonstrator data model

– Used throughout all developments now

• Needs morework still



Analysis

12

• Analysis should be easy and powerful

• Lesson from LHC experiments and ILC/CLIC

– If data model too complex, physicists stop using common software and 

create their own mini-frameworks

• Need to allow multiple paradigms to do analysis

– C++ and Python

• Physicists will join from different experiments and will bring 

along their existing code



Analysis in Python

13

• Very	  large	  user	  base	  
• Super	  easy	  to	  learn
• Light	  &	  short	  code
• Good	  performance
– usually	  wraps	  C	  or	  C++	  modules

• «	  Ba?eries	  included	  »
– massive	  and	  easy-‐to-‐use	  

standard	  library

• Dynamic	  typing	  
– good	  for	  mulDchannel	  analyses
– code	  highly	  reusable

• Dynamic	  object	  modificaDon
– Can	  a?ach	  new	  a?ributes	  (or	  methods)	  to	  an	  

exisDng	  object

• ProducDvity	  x	  5-‐10	  w/r	  C++
• A	  lot	  of	  fun!

• SupporDng	  this	  with	  the	  heppy	  
package	  originaDng	  from	  CMS



Where are we now?

14

• Common FCC experiment software project started

• First phase of pick & chose is finished

• Base software environment in place

• Integrated fast/full sim design validated

• Data Model demonstrator finished

• C++ and Python based analysis environment provided

• Soon to do start more efforts on Reconstruction

– Common ILC/CLIC + FCC reconstruction workshop planned for 

April/May


