Software developments for FCC
physics and experiments

B. Hegner, CERN
for the FCC Experiment Software Team

FCC IEEE Workshop 2015 @\

Washington 7z

Driving Considerations

 Provide robust software to allow physics studies for CDR in 2018

« Support all FCC-ee, -eh, and -hh communities at the same time

— Requires flexibility for Geometry and Simulation
« Start pragmatically

« As studies progress move to more sophisticated solutions

— Allow components to be replaced later on

« FCC software effort relies on effort of other people

— There is a give and take

— Aim for, but don’t blindly force, synergy with other communities

Early Decisions

« Adapt existing solutions from LHC
— Gaudi as underlying framework
— ROOT for I/0
— Geant4 for simulation
— C++ and Python for user analysis
« Adapt software developments from ILC/CLIC
— DD4Hep for detector description
* Invest in better fast vs. full sim integration
— Geant4 fastsim, Atlfast (ATLAS)
* Invest in proper data model
— The LHC experiments’ ones are over-engineered

— The ILC/CLIC implementation (LCIO) isn't state of the art

- Gaudi Event Processing Framework

»two T jets + X, 60 1o’

« Gaudi is an event-independent data processing framework
— Used by LHCb, ATLAS, and a few smaller experiments
« Based on the concept of a software bus

« Work is split up in interdependent "“algorithms”

Input Processing Output
ool oy gy &

Parallelization effort with “GaudiHive” to take advantage of ever

increasing hardware parallelization

The Power Wall - Importance of Parallelism

ll*‘(L\L

In the past speed increase happened

1000000 -

automatically - just wait for your next PC

100000

10000

That is over now!

New CPU improvements

100

10

go into parallelization

-~
1 4

0.1

Clock speed will not increase

because of Power consumption:

10000000

1971

Intel Processor features

& Clock Speed (MHz)
* MaxTOP (W)
Cache (M8)
Transistors
— —Transistors (fit)

Andrzej Nowak, CERN openlab 2012

1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Power « Frequency®

Need to adapt our software to this parallel environment right from the start

— Otherwise we waste the computing resources we urgently need

FCC Simulation

« FCC Software needs to support the studies of multiple detectors
« At different stages different level of detail required
— Smearing vs. fast sim vs. full sim

« FCC choices are
— Delphes (*)
— Fast simulation

— Full simulation with Geant4

o Should all be accessible from within the same framework

(*) http://delphes.hepforge.org

Detector Description

Detector Description in LHC experiments is a not-well organized
environment

« Detectors modeled long ago and expertise largely gone
« Struggling themselves for the upgrade

* Heterogeneous setups even within experiments

ILC/CLIC efforts triggered the project DD4hep (*)

« Covering simulation, display, alignment in a consistent way

FCC joined these efforts of DD4hep
« Good support by developers!

« Working on first test-detector

Fast Simulation

« Goal is to have a combined fast and full simulation
— Decide at the config level where to do what

 (Semi-) automatic extraction of fast simulation parameters from

full simulation

— To be able to do fast-sim for any detector design

« Though not re-inventing the wheel,

we are heavily re-designing it

Simulation Status

« First development phase was focussed on producing a

demonstrator
— Using expertise from ATLAS and Geant4 developers
— Chosen approach worked out nicely

— Results now being integrated into Geant4 and Gaudi

¥
i
¥

[
i
’

Data Model |

The FCC requirements for a good data model are not special at all:

Simplicity
Flexibility
Completeness

Usable in C++ and Python

Data Models of LHC experiments are proven to work

Fairly complex, and very detector specific beasts

The ILC community has a simple, but complete data model (LCIO)

Needs adaption to allow direct ROOT access outside FWK
Parallelism not part of the design

Developers interested in extension and one should take advantage of it

The proper data model is essential for allowing good results

Thus it is worth investing here with a new project!

10

Data Model |

ROOQOT as first choice for I/0
No deep object hierarchies

— Wherever possible concrete types
Simple memory layout

— Employ simple structs instead of fat objects

— Helps with parallelization
Allow access from Python and C++

— Only loose coupling with event processing framework
Quick turnaround for improvements
— Employ code generation

Wrote a demonstrator data model

ALDERS Data Mogel

— Used throughout all developments now

Read LInstructicns in

Needs morework still the NURS.TAT to rem

Hommage 1o the Sguare - Josef Albers

11

Analysis

Analysis should be easy and powerful

Lesson from LHC experiments and ILC/CLIC

— If data model too complex, physicists stop using common software and

create their own mini-frameworks

Need to allow multiple paradigms to do analysis

— C++ and Python

Physicists will join from different experiments and will bring

along their existing code

12

Analysis in Python

Most Popular Coding Languages of 2014

Javascript
52%

code¢ wva\

Very large user base
Super easy to learn
Light & short code

Good performance
usually wraps C or C++ modules

« Batteries included »

massive and easy-to-use
standard library

Dynamic typing
good for multichannel analyses
code highly reusable

Dynamic object modification

Can attach new attributes (or methods) to an
existing object

Productivity x 5-10 w/r C++
A lot of fun!

Supporting this with the heppy
package originating from CMS

13

Where are we now?

« Common FCC experiment software project started
« First phase of pick & chose is finished
« Base software environment in place
« Integrated fast/full sim design validated
« Data Model demonstrator finished
« C++ and Python based analysis environment provided
« Soon to do start more efforts on Reconstruction
— Common ILC/CLIC + FCC reconstruction workshop planned for

April/May

14

