Silicon sensor developments for an upgrade (CMS) Present status of a collaboration with HPK

Gino Bolla,
gino.bolla@cern.ch

On behalf of the CMS SLHC Sensor Working Group

Five proposals submitted to the project that involve sensor development

Letter of Inten

for an R\&D project to develop materials, technologies and simulations for silicon sensor modules at intermediate to large radii of a new CMS tracker for SLHC.

Study of suitability of magnetic Czochralski silicon for the SLHC CMS strip tracker

Today we only cover one of the six proposal:

Institut fuir Experimentelle Kernphysik, Universität Karlsruhe, Germany
E. Cortina Gil, V. Lemaitre, O. Militaru

Louvain, Belgium
T. Bergauer, M. Dragicevic, J. Hrubec, M. Krammer

Institut fiir Hochenergiephysik der Ôsterreichischen Akademie der Wissenschaften, HEPHY, Vienna, Austria

R\&D for Possible Replacement of Inner Pixel Layers With Aims for an SLHC Upgrade

Alice Bean, Timothy Bolton, Aaron Dominguez, Wolfram Erdmann, Cecilia Gerber, Roland Horisberger,
Angel López

Octaber 31, 2007

Abstract

We propee to eany out researel and derebpacant almest at a

 magerial and smimplify modite production. Suel Rac:D would be hidpful if the triner ptsel lagers nead to be repheod part way through the

in the frameworks of RD50 und RD39 colliborations and it has been funus to be more
radiation hard agningt chasged badrons than traitional Float Zone salicon materinl (Fz-Se radation hard agnint charged badrons than tracitions. Float Zone sllicon material (F2-Si) fill-size magnetic Czoclralkki silicon sensors with a beam teleccope and make systenxatic stady of their properties up to the $2 \mathrm{El5} \mathrm{~cm}^{2} 1 \mathrm{NeV}$ neatron equivalen fuence.

Contact persons: Panja Lalukka, Jnkko Hzkōonen, Regina Demina, Leonard Spiegel

WG: CMS Sensor upgrade CMS Upgrade document n.X	
R\&D for Thin Single-Sided Sensors with HPK	
Submitted: January 28, 2008	
Abstract	
The goals of this R\&D are to determin scale and low cost production of sed send and n-nn-p sensors will be investigated, as Epiaxial).	he characteristics of Thin ($<300 \mathrm{um}$) Single-Sided nes and capabililites suitable for high quadity, large ill be different substrate types (FZ, MCZ and
The CMS SLHC Tracker will likely see large pixels ($\sim 2 \mathrm{~mm}$).	le deployment of shoort strips (-2 cm) and or long
A first set of masks and protorype nuns, de characteristics and production technuiques, for specific issues, in particular pertaining to pix sets and corresponding prototype runs.	bed below, is designed to address basic device oth strip and (long) pixel sensors. More device d sensors, will be addressed by subsequent mask
Contact Person (Project Leaderresponsible)	Marcello Mamelli
Paricipating Insitutes include:	
CERN, UCSB, Purutue, FNAL, Penmeja, Bari, P	, Karlune, Vierna, PSI

Goals of this collaboration with HPK

This specific collaboration with Hamamatsu photonics is a natural development of the work done in the 90s for the present strip tracker.
-Extend previous Multi-Geometry studies from Strips to long Pixels
-Extend previous Multi-Geometry studies to substrate thickness less than or equal the pitch
-Strip/Pixel capacitance (back-plane, inter-strip/pixel \& total)
-Critical fields, depletion and break-down voltage
-Sensor functionality (charge collection efficiency etc)
-As function of pitch, w/p, metal overhang, substrate thickness, Pixel Length
-Extend previous studies from LHC to SLHC fluence
-Extend previous studies to include MCZ and Epitaxial substrates
-Extend previous studies to include n-on-p
-Re-produce complementary sets of measurements and simulation

Results of similar studies for the present tracker

Strips multigeometry

Wafer layout

Being finalized with HPK.

- New and improved test structures
- Added some BPIX and FPIX sensor (single ROC)
\square Previous Test StructureMonitor DiodeHPK Test structure

Test structures

- Should become a standard for all CMS sensors submission to perform Q\&A on process and material.

Long pixel geometry

Inter-Pixel Daisy-Chaining
Along Pixel Length / Across Pixel Length

12 Sets of Pixel Geometries

- Each Set with independent Bias and Guard Rings
- Pixels are DC coupled to AI Layer \& Daisy-Chained - (see below)
- Fixed Pixel Pitch = 120um
- Fixed Pixel w/p = 0.25; implant width $=30 u m$
- Fixed Over-Metal $=$ Implant width +8 um
- Both across \& along Pixel

4 Pixel Lengths

- Pixel Lengths =1, 2, 3, 4 mm

For Each Pixel Length
3 Gaps (along Pixel Length)

- Inter-Pixel Gaps = 60, 90, 120 um

32 Pixels (strips) across, in Two Groups of 16

- 16 biased from top \& Daisy-Chained Length-wise
- 16 biased from the side \& Daisy-Chained Across
- Central Pixel (green) is NOT Daisy-Chained (isolated)

64, 32, 21, 16 Pixels Long

Single ROC pixel sensors

HPK submission

Quantities (117 6" wafers)

	N-Fz	P-Fz	P-Fz	n-Mcz	P-MCZ	P-MCZ	N-epi	P-epi	P-epi
		pspray	pstop		pspray	pstop		pspray	pstop
200 um thick by thinning	9	6	6	9	6	6	0	0	0
100 um thick on carrier substrate	9	6	6						
100 um thick epitaxial							9	6	6
50 um thick epitaxial							9	6	6
200 um thick on carrier substrate \& double metal	6		6						

Timeline

- December 2007
- Call for interest
- Discuss and agree layout, thickness and material types
- Discuss and agree program of work and task assignment
- Discuss and agree financing
- Submit Proposal for approval
- June-July 2008
- Place Order with HPK
- February 2009
- HPK deliver
- End of 2009
- Results ready for publication

Spares (from now on)

Silicon Beam telescope (SiBT)

Helsinki Institute of Physics, Fermilab, Universität Karlsruhe, Université Catholique de Louvain, Università di Padova, University of Rochester
> The telescope reference planes + detectors under test are housed inside the Vienna box.
> The temperature can be set down to $-20^{\circ} \mathrm{C}$
> Reference planes are installed to ± 45 degrees (due to the height limitation)
> Reference detectors DO Run IIb HPK sensors with: >60 micron pitch $>$ intermediate strips $>$ size $4 \mathrm{~cm} \times 9 \mathrm{~cm}$ >639 channels

> Readout electronics: CMS 6-APV chip Tracker Outer Barrel hybrids (5 chips bonded)
> DAQ software: a modified version of XDAQ rc1205

A two column pixel
And a four columns pixel implemented in the CMS pixel geometry

3D sensor development is active with Sintef. Producer of the CMSFPIX sensor.
First prototypes for bumpbonding hopefully by the end of 2008

