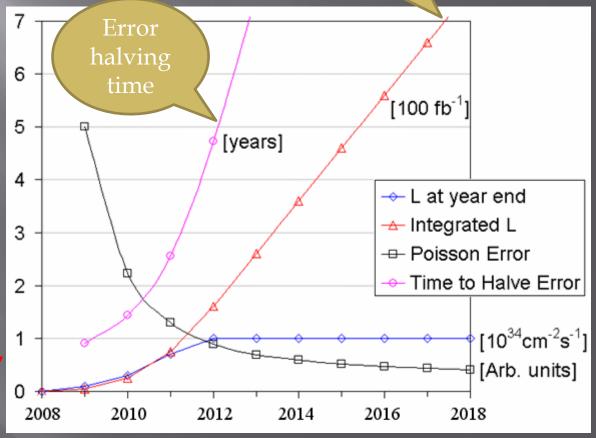


# UPGRADE PLANS FOR THE CERN ACCELERATOR COMPLEX

#### **OUTLINE**

- · Why upgrade? When?
- Injectors
- ·LHC
- Preliminary expectations


# Why upgrade the LHC?

Hardware ageing

Foreseeable luminosity evolution

⇒ Need for a major luminosity upgrade in ~2017 (SLHC) Radiation damage limit

© J. Strait



# Why upgrade the injectors?

- Need for reliability:
  - Accelerators are old [Linac2: 1978, PSB: 1975, PS: 1959, SPS: 1976]
  - They operate far from their design parameters and close to hardware limits
  - The infrastructure has suffered from the concentration of resources on LHC during the past 10 years
- Need for better beam characteristics

### When?

Start of SLHC: ~2017

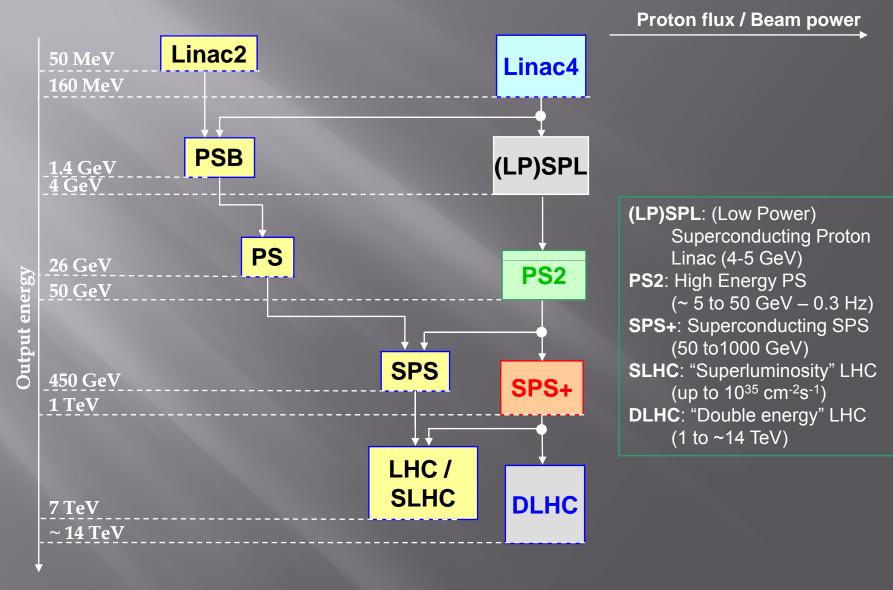
- ⇒ start of construction (New IR hardware and new injectors): ~2012
- ⇒ Detailed project proposal (TDR + cost estimates):
  mid-2011
- $\Rightarrow$  R & D for new IR hardware and new injectors: 2008-2011

# INJECTORS



## Upgrade procedure

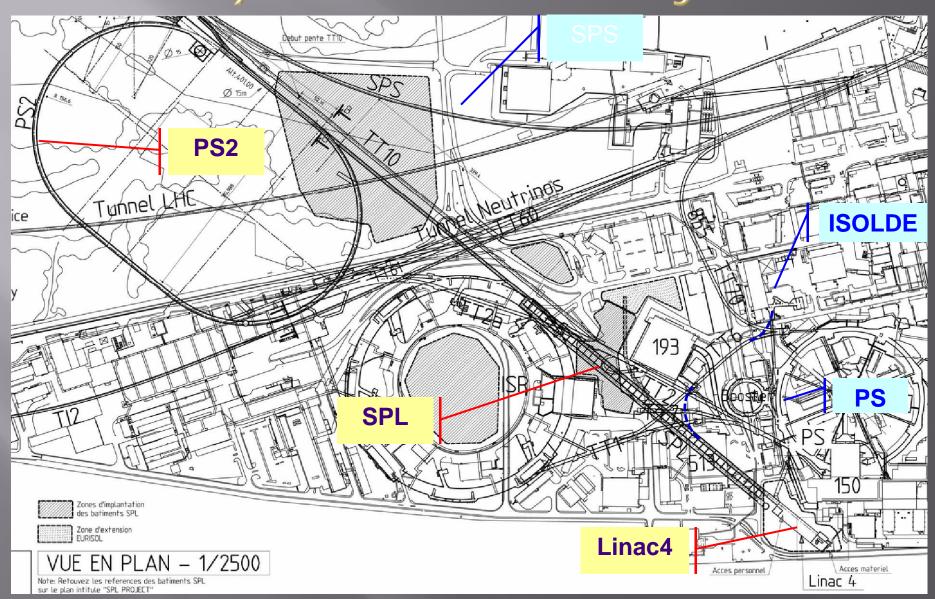
#### Main performance limitation:


Incoherent space charge tune spreads  $\Delta Q_{SC}$  at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the required beam brightness  $N/\varepsilon^*$ .

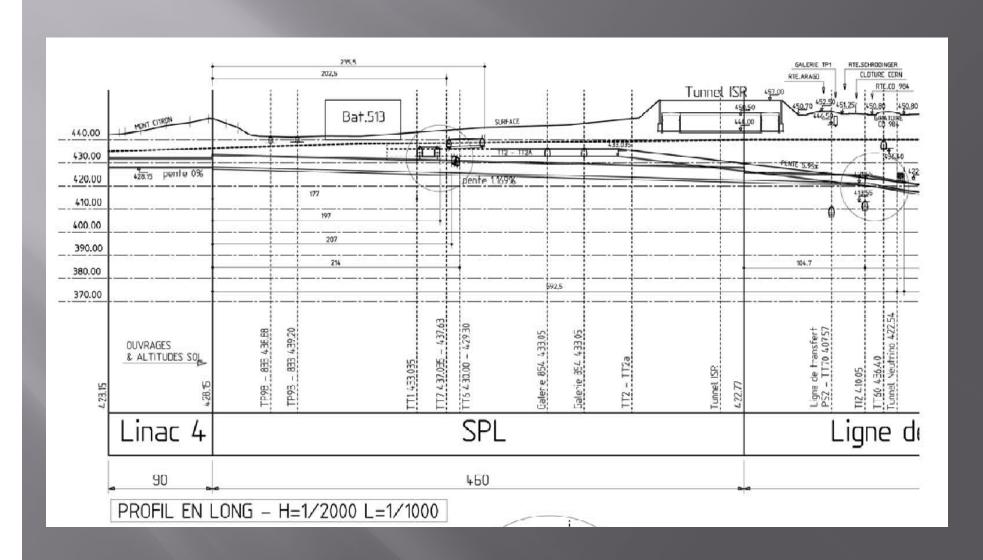


# ⇒ need to increase the injection energy in the synchrotrons

- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV


### Present and future injectors




LHCC - 1 July, 2008

7

## Layout of the new injectors



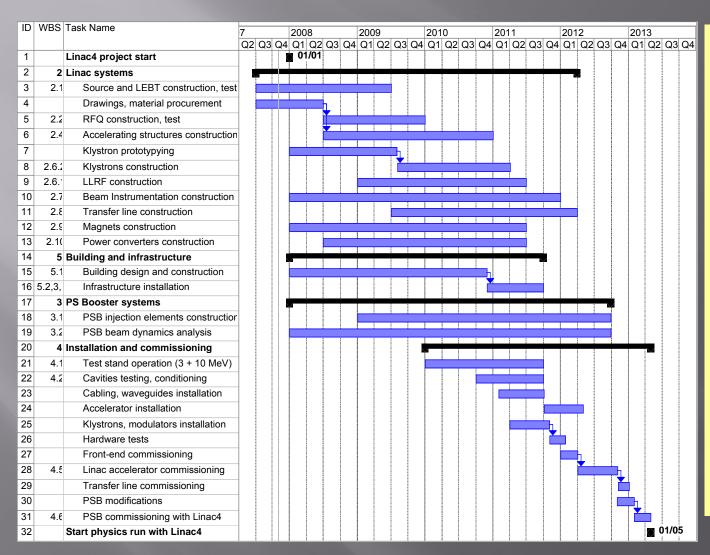
## Layout of the new injectors



# Stage 1: Linac4

Enabled by additional resources for "New Initiatives"




#### 352.2 MHz

Linac4 beam characteristics



| Ion species                       | H <sup>*</sup>       |
|-----------------------------------|----------------------|
| Output kinetic energy             | 160 MeV              |
| Bunch frequency                   | 352.2 MHz            |
| Max. repetition rate              | 1.1 (2) Hz           |
| Beam pulse duration               | 0.4 (1.2) ms         |
| Chopping factor (beam on)         | 62%                  |
| Source current                    | 80 mA                |
| RFQ output current                | 70 mA                |
| Linac current                     | 64 mA                |
| Average current during beam pulse | 40 mA                |
| Beam power                        | 5.1 kW               |
| Particles / pulse                 | 1.0 10 <sup>14</sup> |
| Transverse emittance (source)     | 0.2 mm mrad          |
| Transverse emittance (linac)      | 0.4 mm mrad          |

# Stage 1: Planning



#### Milestones

- > End CE works: December 2010
- ➤ Installation: 2011
- ➤ Linac commissioning: 2012
- ➤ Modifications PSB: shut-down 2012/13 (6 months)
- Beam from PSB:1rst of May 2013

# Stage 1: Benefits

#### **Stop of Linac2:**

- End of recurrent problems with Linac2 (vacuum leaks, etc.)
- End of use of obsolete RF triodes (hard to get + expensive)

#### **Higher performance for the PSB:**

- Space charge decreased by a factor of 2 in the PSB
  - ⇒ potential to double the beam brightness and fill the PS with the LHC beam in a single pulse: no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS
  - $\Rightarrow$  easier handling of high intensity.
- Low loss injection process (Charge exchange instead of betatron stacking)
- High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)
- □ More intensity per pulse available for PSB beam users (ISOLDE) up to 2×
- More PSB cycles available for other uses than LHC

#### First step towards the SPL:

 Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics

# Stage 2: LP-SPL

Linac4 (160 MeV)

SC-linac (4 GeV)

3 MeV 50 MeV 102 MeV 180 MeV 643 MeV 4 GeV H source -RFQ -chopper-DTL +CCDTL +PIMS  $+\beta=0.65$   $+\beta=1.0$   $\rightarrow$ 

Length: 460 m

352.2 MHz

704.4 MHz

LP-SPL beam characteristics



| Kinetic energy (GeV)                | 4    |
|-------------------------------------|------|
| Beam power at 4 GeV (MW)            | 0.16 |
| Rep. period (s)                     | 0.6  |
| Protons/pulse (x 10 <sup>14</sup> ) | 1.5  |
| Average pulse current (mA)          | 20   |
| Pulse duration (ms)                 | 1.2  |



R.G.

# Stage 2: PS2

# **PS2** main characteristics compared to the present PS

|                                                  | PS2                    | PS                      |
|--------------------------------------------------|------------------------|-------------------------|
| Injection energy kinetic (GeV)                   | 4.0                    | 1.4                     |
| Extraction energy kinetic (GeV)                  | ~ 50                   | 13/25                   |
| Circumference (m)                                | 1346                   | 628                     |
| Maximum intensity LHC (25ns) (p/b)               | 4.0 x 10 <sup>11</sup> | ~1.7 x 10 <sup>11</sup> |
| Maximum intensity for fixed target physics (p/p) | 1.2 x 10 <sup>14</sup> | $3.3 \times 10^{13}$    |
| Maximum energy per beam pulse (kJ)               | 1000                   | 70                      |
| Max ramp rate (T/s)                              | 1.5                    | 2.2                     |
| Cycle time at 50 GeV (s)                         | 2.4                    | 1.2/2.4                 |
| Max. effective beam power (kW)                   | 400                    | 60                      |

# Stage 2: Planning

Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics.

Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

| ID | Task Name                   | Start       | Finish      | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017       | 2018 |
|----|-----------------------------|-------------|-------------|------|------|------|------|------|------|------|------|------|------|------------|------|
| 1  | SPL + PS2                   | Mon 1/7/08  | Mon 7/3/17  | ,    | 7    |      |      |      |      |      |      |      |      |            |      |
| 2  | Design                      | Mon 1/7/08  | Wed 6/1/11  |      |      |      |      |      | Ĺ    |      |      |      |      |            |      |
| 3  | SPL Construction            | Mon 1/2/12  | Fri 1/1/16  |      |      |      |      |      |      |      |      |      | j    |            |      |
| 4  | SPL beam commissioning      | Mon 6/1/15  | Fri 12/2/16 |      |      |      |      |      |      |      |      |      |      |            |      |
| 5  | PS2 construction            | Mon 1/2/12  | Fri 4/1/16  |      |      |      |      |      |      |      |      |      |      |            |      |
| 6  | PS2 beam commissioning      | Mon 4/4/16  | Fri 12/2/16 |      |      |      |      |      |      |      |      |      |      |            |      |
| 7  | SPS modification            | Fri 11/4/16 | Fri 5/5/17  |      |      |      |      |      |      |      |      |      | (    |            |      |
| 8  | SPS beam commissioning      | Mon 5/8/17  | Fri 6/30/17 |      |      |      |      |      |      |      |      |      |      | Į 🚹        |      |
| 9  | Start operation for physics | Mon 7/3/17  | Mon 7/3/17  |      |      |      |      |      |      |      |      |      |      | <b>♠</b> 7 | /3   |

#### Milestones

- > Project proposal: June 2011
- ➤ Project start: January 2012
- ➤ LP-SPL commissioning: mid-2015
- > PS2 commissioning: mid-2016
- ➤ SPS commissioning: May 2017
- > Beam for physics: July 2017

# Stage 2: Benefits

#### Stop of PSB and PS:

- End of recurrent problems (damaged magnets in the PS, etc.)
- End of operation of old accelerators at their maximum capability
- Safer operation at higher proton flux (adequate shielding and collimation)

#### **Higher performance:**

- Capability to deliver 2.2× the ultimate beam for LHC to the SPS
  - $\Rightarrow$  potential to prepare the SPS for supplying the beam required for the SLHC,
- Higher injection energy in the SPS + higher intensity and brightness
  - $\Rightarrow$  easier handling of high intensity. Potential to increase the intensity per pulse.
- Benefits for users of the LPSPL and PS2
  - More than 50 % of the LPSPL pulses will be available (not needed by PS2)
    - $\Rightarrow$  New nuclear physics experiments extension of ISOLDE (if no EURISOL)...
  - Upgraded characteristics of the PS2 beam wrt the PS (energy and flux)
  - Potential for a higher proton flux from the SPS

# LHC

# Preliminary improvements

Enabled by additional resources for "New Initiatives" + Support of EU-FP7 & US-LARP

#### Known limitations of LHC "as built"

Collimation phase 1:

Limit at ~40% of nominal intensity

Initial IR triplets:

• gradient: 205 T/m

- aperture:
  - Coil 70 mm
  - □ Beam screen 60 mm  $\Rightarrow$  minimum  $\beta^* = 0.55$  m

maximum  $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 

■ Power in triplet ~ 200 W at 1.9 K

## Preliminary improvements

Enabled by additional resources for "New Initiatives" + Support of EU-FP7 & US-LARP

#### Collimation phase 2

■ Goal: 10 × better in cleaning efficiency / impedance / set-up time (accuracy?), much more robust against radiation and better for radiation handling.

#### Means:

- Cleaning efficiency: add. metallic collim. + cryogenics collim.
   inside sc dispersion suppressor + # material for primary collim.
- Impedance: investigate new ideas (!) + beam feedback + use less collimators + increased triplet aperture (IR upgrade phase 1)
- Set-up time (accuracy ?): BPM inside collimator jaws

#### • Planning:

- Conceptual design review by end 2008
- Hardware test with & without beam in 2009/2010
- Operational in 2011/2012

## Preliminary improvements

Enabled by additional resources for "New Initiatives" + Support of EC-FP7 & US-LARP

#### IR upgrade phase 1

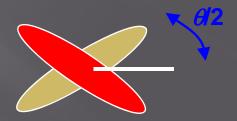
Goal: Enable focusing of the beams to  $\beta^*$ =0.25 m in IP1 and IP5, and reliable operation of the LHC at  $2 - 3 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>.

#### Scope:

- Upgrade of ATLAS and CMS IRs.
- Replace present triplets with wide aperture quadrupoles based on LHC dipole cables (Nb-Ti) cooled at 1.9 K.
- Upgrade D1 separation dipole, TAS and other beam-line equipment so as to be compatible with the inner triplet aperture.
- Modify matching sections (D2-Q4, Q5, Q6) to improve optics flexibility. Introduction of other equipment to the extent of available resources.
- Planning: operational for physics in 2013

# Instantaneous luminosity

For operation at the beam-beam limit with alternating planes of crossing at two IPs:




where  $(\Delta Q_{bb})$  = total beam-beam tune shift



with  $\phi$  = Piwinski angle





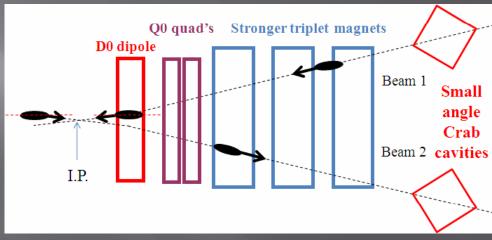
effective beam emittance



# Schemes comparison © F. Zimmermann

| Parameter                       | Symbol                                               | Nominal     | Ultimate    | EA          | FCC         | LPA        |
|---------------------------------|------------------------------------------------------|-------------|-------------|-------------|-------------|------------|
| transverse emittance            | ε [μm]                                               | 3.75        | 3.75        | 3.75        | 3.75        | 3.75       |
| protons per bunch               | $N_b [10^{11}]$                                      | 1.15        | 1.7         | 1.7         | 1.7         | 4.9        |
| bunch spacing                   | Δt [ns]                                              | 25          | 25          | 25          | 25          | 50         |
| beam current                    | I [A]                                                | 0.58        | 0.86        | 0.86        | 0.86        | 1.22       |
| longitudinal profile            |                                                      | Gauss       | Gauss       | Gauss       | Gauss       | Flat       |
| rms bunch length                | $\sigma_{z}$ [cm]                                    | 7.55        | 7.55        | 7.55        | 7.55        | 11.8       |
| beta* at IP1&5                  | β* [m]                                               | 0.55        | 0.5         | 0.08        | 0.08        | 0.25       |
| full crossing angle             | $\theta_{\rm c}$ [µrad]                              | 285         | 315         | 0           | 673         | 381        |
| Piwinski parameter              | $\phi = \theta_c \sigma_z / (2*\sigma_x^*)$          | 0.64        | 0.75        | 0           | 0           | 2.0        |
| hourglass reduction             |                                                      | 1           | 1           | 0.26        | 0.36        | 0.99       |
| peak luminosity                 | $L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$           | 1           | 2.3         | 15.5        | 15.5        | 10.7       |
| peak events per #ing            |                                                      | 19          | 44          | 294         | 294         | 403        |
| initial lumi lifetime           | $\tau_{\mathrm{L}}\left[\mathrm{h}\right]$           | 22          | 14          | 2.2         | 2.2         | 4.5        |
| effective luminosity            | $L_{eff}[10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$    | 0.46        | 0.91        | 2.4         | 2.4         | 2.5        |
| (T <sub>turnaround</sub> =10 h) | T <sub>run,opt</sub> [h]                             | 21.2        | 17.0        | 6,5         | 6.6         | <b>%</b> 5 |
| effective luminosity            | $L_{eff}[10^{34}  \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ | 0.56        | 1.15        | 3.6         | 3.6         | 3.5        |
| $(T_{turnaround} = 5 h)$        | T <sub>run,opt</sub> [h]                             | 15.0        | 12.0        | 4.6         | 4.6         | 6.7        |
| e-c heat SEY=1.4(1.3)           | P [W/m]                                              | 1.07 (0.44) | 1.04 (0.59) | 1.04 (0.59) | 1.04 (0.59) | 0.36 (0.1) |
| SR heat load 4.6-20 K           | P <sub>SR</sub> [W/m]                                | 0.17        | 0.25        | 0.25        | 0.25        | 0.36       |
| image current heat              | P <sub>IC</sub> [W/m]                                | 0.15        | 0.33        | 0.33        | 0.33        | 0.78       |

# "Early Separation" scheme


#### Main ingredients:

- Ultimate beam
- D0 dipole close to IP  $\Rightarrow$  bunches quasi-aligned at collision  $(\phi \sim 0)$   $\Rightarrow$  larger  $\triangle Q_{bb}$
- Very small  $\beta$ \*(8 cm)
- Hour-glass effect

Total 6.7

0.86

Factor wrt ultimate



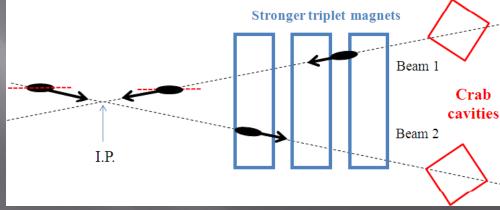
- ultimate beam (1.7x10<sup>11</sup> protons/bunch, 25 spacing),
   β\* ~10 cm
- early-separation dipoles in side detectors, crab cavities
  - $\rightarrow$  hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta \beta$

J.-P. Koutchouk

# "Full Crab Crossing" scheme

#### Main ingredients:

- Ultimate beam
- Crab cavities  $\Rightarrow$  bunches quasi-aligned at collision  $(\phi \sim 0)$   $\Rightarrow$  larger  $\triangle Q_{bb}$
- Very small  $\beta$ \*(8 cm)
- Hour-glass effect


Total 6.7

**Factor wrt** ultimate 0.86 6.7

r wrt nate

L. Evans, W. Scandale,





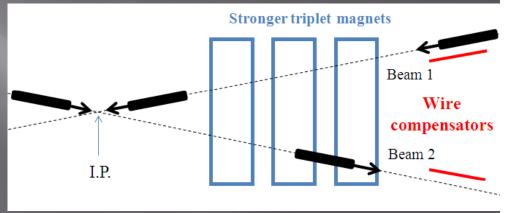
- ultimate LHC beam (1.7x10<sup>11</sup> protons/bunch, 25 spacing)
- β\* ~10 cm
- crab cavities with 60% higher voltage
  - $\rightarrow$  first hadron crab cavities, off- $\delta$   $\beta$ -beat

# "Large Piwinski angle" scheme

#### Main ingredients:

- Larger beam current
- Large Piwinski angle and  $3 \times$  intensity per bunch( $\phi \sim 2$ )  $\Rightarrow$  larger  $\Delta Q_{bb}$
- Reduced  $\beta$ \*(25 cm)
- Longit. profile

1.4


Total 5.3

Factor wrt ultimate

W. Scandale.

F. Zimmermann

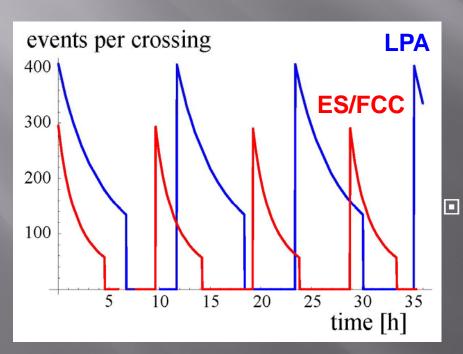
F. Ruggiero,

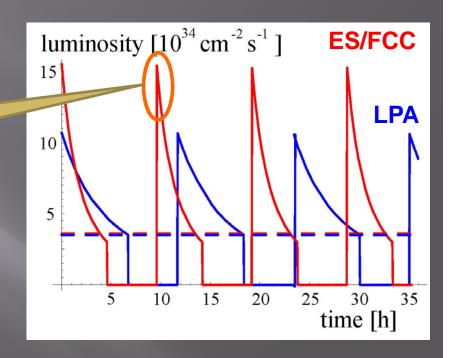


- 50 ns spacing, longer & more intense bunches (5x10<sup>11</sup> protons/bunch)
- $\beta*\sim25$  cm, no elements inside detectors
- long-range beam-beam wire compensation
  - $\rightarrow$  novel operating regime for hadron colliders

# Luminosity lifetime




Increased luminosity  $\Rightarrow$  reduced life time


- **■** Compensation measures  $\Rightarrow$  increased total intensity:
  - either more bunches  $\binom{n_b}{1}$ : abandoned because of heat load to the beam screen and electron clouds effects
  - or higher intensity per bunch  $(N_b \uparrow)$ : "soft" limit used in the LPA scheme
- Possible additional action: luminosity leveling

# Luminosity evolution

Luminosity decays faster with ES/FCC schemes

Initial peak luminosity may not be useful for physics

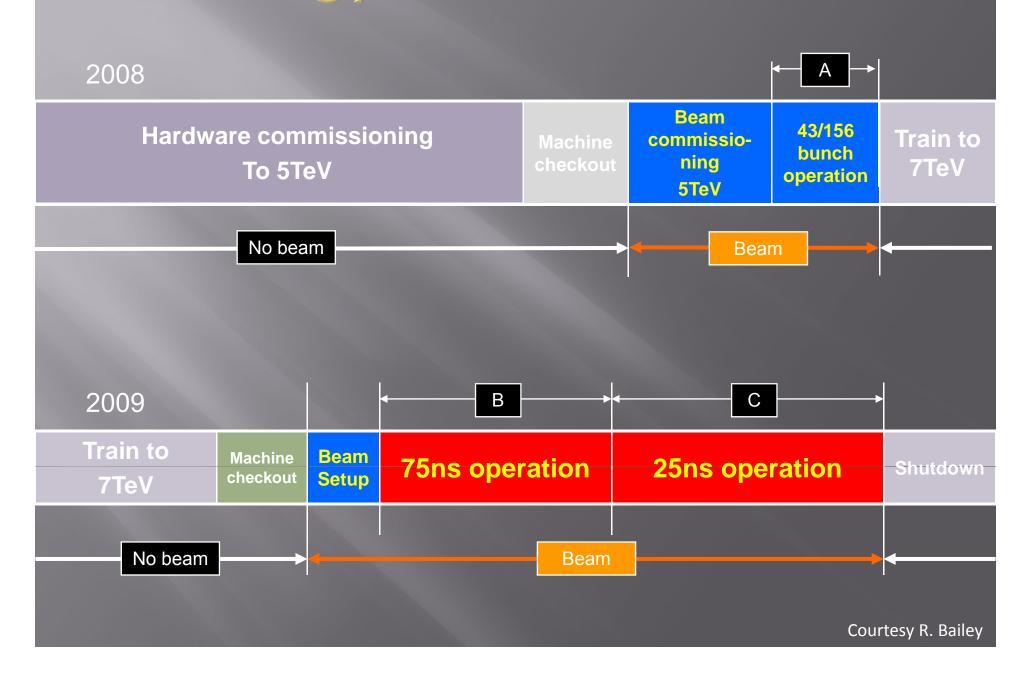




But LPA always gives more events per crossing...

# Luminosity leveling

Experiments prefer more constant luminosity, with less pile up at the start of the run and higher luminosity at the end.


**⇒** Interest for luminosity leveling

#### How?

- ES/FCC schemes: variable  $\beta^*$  and/or  $\theta$  (either the effective crossing angle at the IP or the field in the crab cavities)
- LPA scheme: variable  $\beta^*$  and/or  $\sigma_Z$

# PRELIMINARY EXPECTATIONS

# Strategy for 2008 and 2009

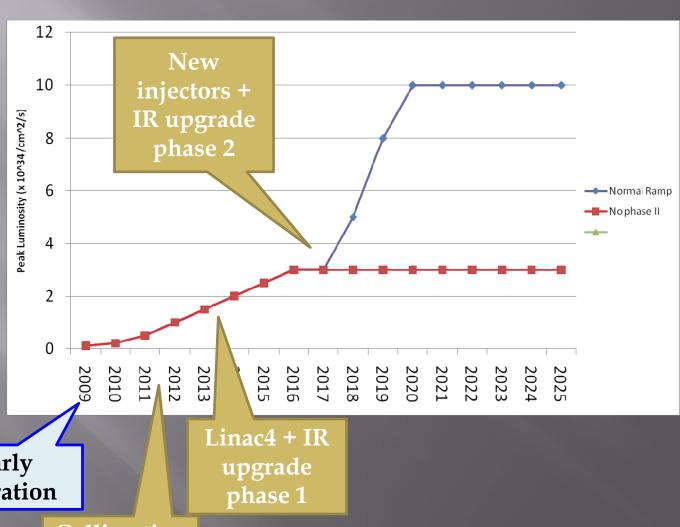


# Parameter evolution and rates

$$L = \frac{N^2 k_b f \gamma}{4\pi \varepsilon_n \beta^*} F$$

 $L = \frac{N^2 k_b f \gamma}{4 \pi \epsilon \beta^*} F$  Eventrate / Cross =

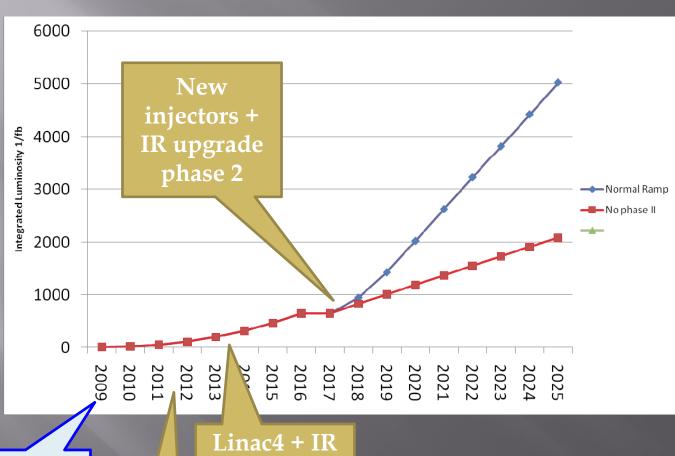
All values for nominal emittance, 10m  $\beta^*$  in points 2 and 8


All values for 936 or 2808 bunches colliding in 2 and 8 (not quite right)

| Pá             | aramete            | rs     | Beam                 | levels            | Rates in                            | 1 and 5  | Rates in                            | 2 and 8              |
|----------------|--------------------|--------|----------------------|-------------------|-------------------------------------|----------|-------------------------------------|----------------------|
| k <sub>b</sub> | N                  | β* 1,5 | l <sub>beam</sub>    | E <sub>beam</sub> | Luminosity                          | Events/  | Luminosity                          | Events/              |
|                |                    | (m)    | proton               | (MJ)              | (cm <sup>-2</sup> s <sup>-1</sup> ) | crossing | (cm <sup>-2</sup> s <sup>-1</sup> ) | crossing             |
| 43             | 4 10 <sup>10</sup> | 11     | 1.7 10 <sup>12</sup> | 1.4               | 8.0 10 <sup>29</sup>                | << 1     |                                     |                      |
| 43             | 4 10 <sup>10</sup> | 3      | 1.7 10 <sup>12</sup> | 1.4               | 2.9 10 <sup>30</sup>                | 0.36     | Depend                              |                      |
| 156            | 4 10 <sup>10</sup> | 3      | 6.2 10 <sup>12</sup> | 5                 | 1.0 10 <sup>31</sup>                | 0.36     | collisior                           | ration of<br>pattern |
| 156            | 9 10 <sup>10</sup> | 3      | 1.4 10 <sup>13</sup> | 11                | 5.4 10 <sup>31</sup>                | 1.8      |                                     |                      |
| 936            | 4 10 <sup>10</sup> | 11     | 3.7 10 <sup>13</sup> | 42                | 2.4 10 <sup>31</sup>                | <<1      | 2.6 10 <sup>31</sup>                | 0.15                 |
| 936            | 4 10 <sup>10</sup> | 2      | 3.7 10 <sup>13</sup> | 42                | 1.3 10 <sup>32</sup>                | 0.73     | 2.6 10 <sup>31</sup>                | 0.15                 |
| 936            | 6 10 <sup>10</sup> | 2      | 5.6 10 <sup>13</sup> | 63                | 2.9 10 <sup>32</sup>                | 1.6      | 6.0 10 <sup>31</sup>                | 0.34                 |
| 936            | 9 10 <sup>10</sup> | 1      | 8.4 10 <sup>13</sup> | 94                | 1.2 10 <sup>33</sup>                | 7        | 1.3 10 <sup>32</sup>                | 0.76                 |
| 2808           | 4 10 <sup>10</sup> | 11     | 1.1 10 <sup>14</sup> | 126               | 7.2 10 <sup>31</sup>                | << 1     | 7.9 10 <sup>31</sup>                | 0.15                 |
| 2808           | 4 10 <sup>10</sup> | 2      | 1.1 10 <sup>14</sup> | 126               | 3.8 10 <sup>32</sup>                | 0.72     | 7.9 10 <sup>31</sup>                | 0.15                 |
| 2808           | 5 10 <sup>10</sup> | 1      | 1.4 10 <sup>14</sup> | 157               | 1.1 10 <sup>33</sup>                | 2.1      | 1.2 10 <sup>32</sup>                | 0.24                 |
| 2808           | 5 10 <sup>10</sup> | 0.55   | 1.4 10 <sup>14</sup> | 157               | 1.9 10 <sup>33</sup>                | 3.6      | 1.2 10 <sup>32</sup>                | 0.24                 |

# Basic expectations

|             |       | Nor                                  | mal Ran                                      | np                                         | No phase II                        |                                             |                     |  |
|-------------|-------|--------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|---------------------|--|
|             | Year  | Peak Lumi I<br>(x 10 <sup>34</sup> ) | Annual<br>ntegrated  <br>(fb <sup>-1</sup> ) | Total<br>Integrated<br>(fb <sup>-1</sup> ) | Peak Lumi<br>(x 10 <sup>34</sup> ) | Annual<br>Integrated<br>(fb <sup>-1</sup> ) |                     |  |
|             |       |                                      |                                              | (10.7)                                     | ·                                  | (10.)                                       | (fb <sup>-1</sup> ) |  |
| Collimation | 2009  | 0.1                                  | 6                                            | 6                                          | 0.1                                | 6                                           | 6                   |  |
|             | 2010  | 0.2                                  | 12                                           | 18                                         | 0.2                                | 12                                          | 18                  |  |
| phase 2     | 2011  | 0.5                                  | 30                                           | 48                                         | 0.5                                | 30                                          | 48                  |  |
| Linac4 + IR | 2012  | 1                                    | 60                                           | 108                                        | 1                                  | 60                                          | 108                 |  |
|             | 2013  | 1.5                                  | 90                                           | 198                                        | 1.5                                | 90                                          | 198                 |  |
| upgrade     | 2014  | 2                                    | 120                                          | 318                                        | 2                                  | 120                                         | 318                 |  |
| phase 1     | 2015  | 2.5                                  | 150                                          | 468                                        | 2.5                                | 150                                         | 468                 |  |
|             | 2016  | 3                                    | 180                                          | 648                                        | 3                                  | 180                                         | 648                 |  |
| New         | 2017  | 3                                    | 0                                            | 648                                        | 3                                  | 0                                           | 648                 |  |
| injectors + | 2018  | 5                                    | 300                                          | 948                                        | 3                                  | 180                                         | 828                 |  |
| IR upgrade  | 2019  | 8                                    | 420                                          | 1428                                       | 3                                  | 180                                         | 1008                |  |
| phase 2     | 2020  | 10                                   | 540                                          | 2028                                       | 3                                  | 180                                         | 1188                |  |
| P           | 2021  | 10                                   | 600                                          | 2628                                       | 3                                  | 180                                         | 1368                |  |
| - 41 A      | 2022  | 10                                   | 600                                          | 3228                                       | 3                                  | 180                                         | 1548                |  |
| Radiation   | 2023  | 10                                   | 600                                          | 3828                                       | 3                                  | 180                                         | 1728                |  |
| damage      | 2024  | 10                                   | 600                                          | 4428                                       | 3                                  | 180                                         | 1908                |  |
| limit ???   | _2025 | 10                                   | 600                                          | 5028                                       | 3                                  | 180                                         | 2088                |  |


# Peak luminosity...



**Early** operation

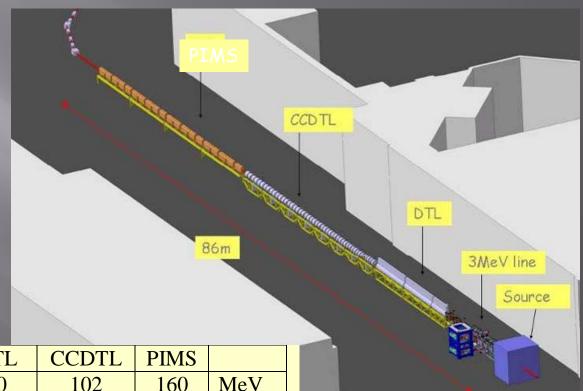
> Collimation phase 2

# Integrated luminosity...



Early operation

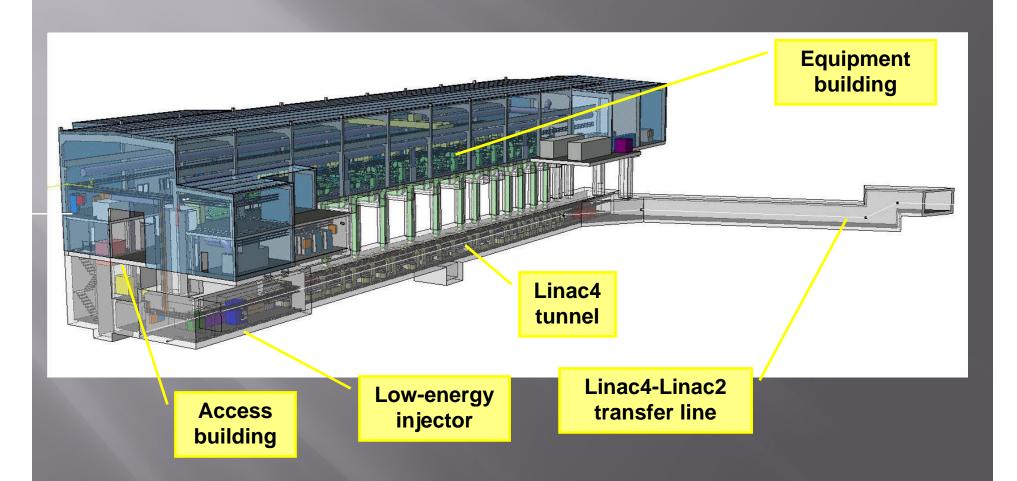
Linac4 + IR upgrade phase 1


Collimation phase 2

# REFERENCES - Linac4-

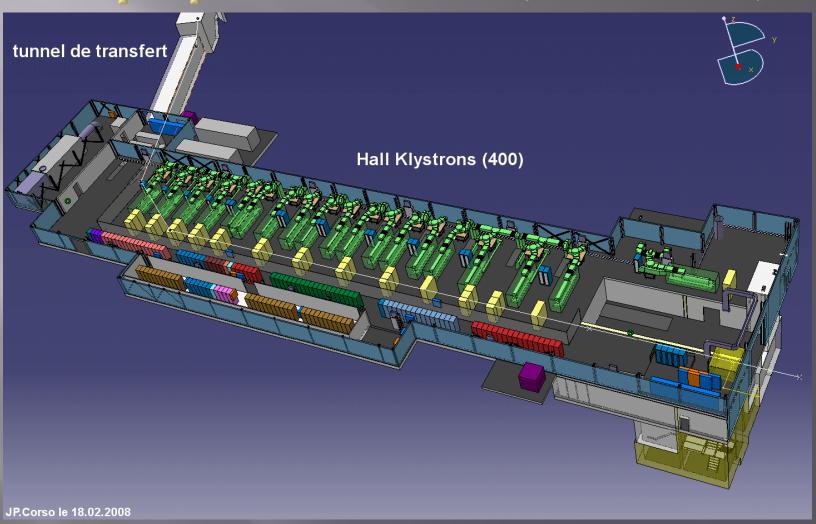
## Linac4 accelerating structures

Linac4 accelerates H- ions up to 160 MeV energy:


- ☐ in about 80 m length
- ☐ using 4 different accelerating structures, all at 352 MHz
- ☐ the Radio-Frequency power is produced by 19 klystrons
- ☐ focusing of the beam is provided by 111 Permanent Magnet Quadrupoles and 33 Electromagnetic Quadrupoles



|                         | RFQ  | DTL  | CCDTL   | PIMS |       |
|-------------------------|------|------|---------|------|-------|
| Output energy           | 3    | 50   | 102     | 160  | MeV   |
| Frequency               | 352  | 352  | 352     | 352  | MHz   |
| No. of resonators       | 1    | 3    | 7       | 12   |       |
| Gradient E <sub>0</sub> | -    | 3.2  | 2.8-3.9 | 4.0  | MV/m  |
| Max. field              | 1.95 | 1.6  | 1.7     | 1.8  | Kilp. |
| RF power                | 0.5  | 4.7  | 6.4     | 11.9 | MW    |
| No. of klystrons        | 1    | 1+2  | 7       | 4+4  |       |
| Length                  | 6    | 18.7 | 25.2    | 21.5 | m     |

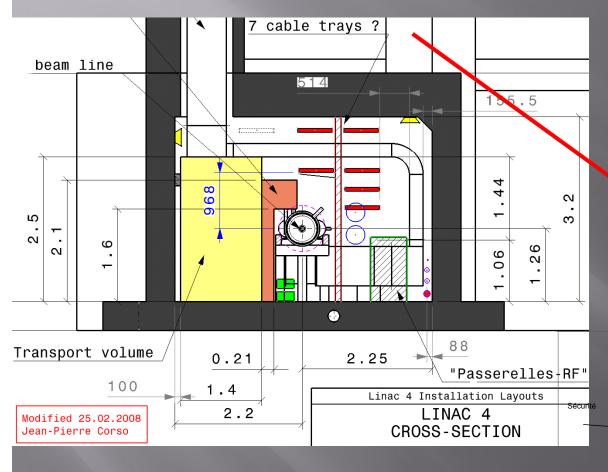

A 70 m long transfer line connects to the existing line Linac2 - PS Booster

# Linac4 civil engineering

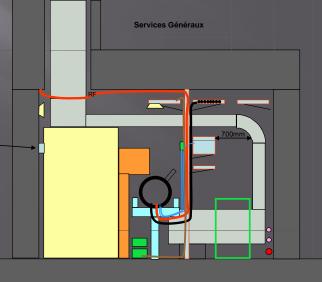


June 23-27, 2008 R.G.

# Equipment Hall (Bld. 400)




False floor 500mm (all along equipment hall)


June 23-27, 2008 R.G.

# Tunnel cross-section 🛈





Final position of cable trays:

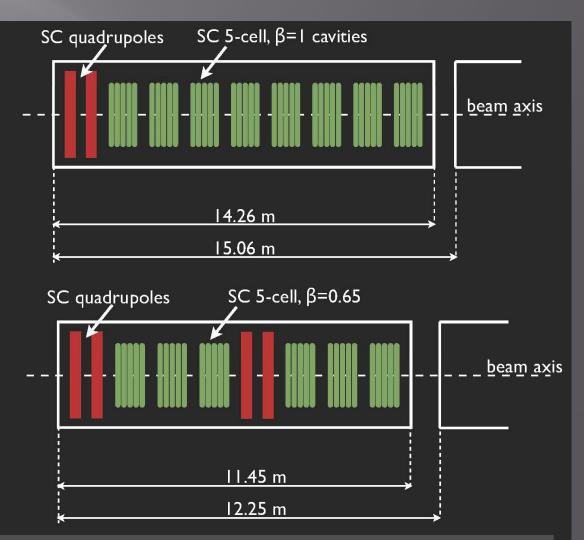


# REFERENCES - SPL -

# SPL architecture

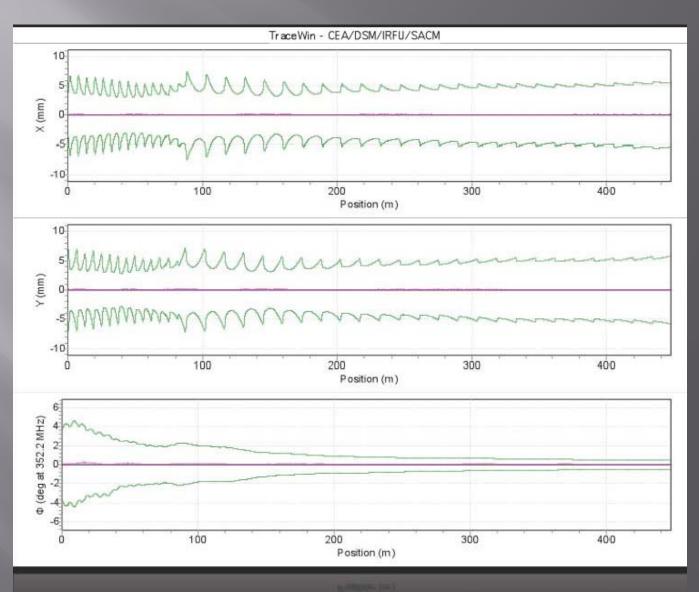
| SPL type              | nominal<br>improved | option I      | l b           |
|-----------------------|---------------------|---------------|---------------|
| frequency [MHz]       | 704.4               | 408.8         | 352.2/1408.8  |
| beta families         | 0.65/0.92           | 0.6/0.76/0.94 | 0.67/0.8/0.94 |
| cells/cavity          | 5/5                 | 7/9/9         | 4/5/9         |
| trans. energies [MeV] | 160/589             | 160/358/876   | tbs           |
| output energy [MeV]   | 5137                | 4992          | tbs           |
| gradients [MV/m]      | 19/25               | 19/20/28      | tbs           |
| cavities p. module    | 6/8                 | 4/4/8         | 1/1/8         |
| cavities p. period    | 3/8                 | 2/4/8         | tbs           |
| cavities p. family    | 39/192              | 32/48/176     | tbs           |
| cavities in total     | 231                 | 256           | tbs           |
| length [m]            | 425                 | 466           | tbs           |

June 23-27, 2008 "Potential SPL architectures", SPL review, 30 April 2008, F. Gerigk, M. Eshraqi


# Cryomodules

#### high-beta section:

- 704.4 MHz, 25 MV/m,
- 668 5094 MeV,
- 25 periods, 200 cavities,
- 377 m


#### low-beta section:

- 704.4 MHz, 19 MV/m,
- 180 668 MeV,
- 14 periods, 42 cavities,
- 86 m



in total: 463 m, 242 cavities, 2 families, 704 MHz

# Beam envelopes (5 rms)





June 23-27, 2008 "Potential SPL architectures", SPL review, 30 April 2008, F. Gerigk, M. Eshraqi