LHCC Upgrade Session

CERN, July 1st 2008
D. Ferrère, University of Geneva
What are we considering for the ID Upgrade

- **New ID layout:** Only silicon pixel and strip detectors
- **New detector technology:** n-in-p
- **New ASICs technologies:** 250 nm → 130nm or 90 nm
- **Cooling with more headroom:** Silicon temperature below -20°C
- **New biasing scheme:** Serial powering or DC-DC for parallel powering
- **Faster readout:** FE asics and data transmission link (5Gb/s)
- **Module integration will be grouped** on a stave or a super-module structure → performances
- **DCS is proposed to be integrated into the readout architecture**
- **Main engineering requirement:** Assemble and commission the complete ID in a surface building. B-layer could be inserted separately together with the beam pipe.

All the working group has to keep in mind the detector challenges at SLHC…
The ID challenges at SHLC

From M. Weber
The goal for b-layer replacement is fall 2012
Actual b-layer is expected to survive 3 years at LHC design luminosity (~300fb⁻¹)
The Upgrade of the entire tracker should take place in 2016

Strawman 06 → 07 → Fixed length barrel

- Long strips (~10 cm x 80 μm)
- Short strips (~2.5/5 cm x 80 μm)
- Pixels

Including disks this leads to:
- Pixels: 5 m², ~300,000,000 channels
- Short strips: 60 m², ~30,000,000 channels
- Long strips: 100 m², ~15,000,000 channels
Short Strip Sensors - HPK

- Strip segments
 - 4 rows of 2.38 cm strips (each row 1280 channels)

<table>
<thead>
<tr>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Full square</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 150 mm p-type FZ(100)</td>
</tr>
<tr>
<td>- 138 mm dia. usable</td>
</tr>
<tr>
<td>- 320 µm thick</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axial strips</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 74.5 µm pitch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stereo strips</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 40 mrad</td>
</tr>
<tr>
<td>- 71.5 µm pitch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond pads location</th>
</tr>
</thead>
<tbody>
<tr>
<td>- accommodating 24-40 mm distances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-strip isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- P-stop</td>
</tr>
<tr>
<td>- Spray on miniatures</td>
</tr>
</tbody>
</table>

130 detectors ordered end of last year (~360 kCHF)
Goal: Prepare a design of the FE ASIC in deep submicron radiation tolerant. Design and evaluation with 250 nm towards 130 or 90 nm technology

Minimum requirements:

- Implementation of an on-chip shunt regulation to allow any powering scheme (Serial or DC-DC)
- Increased data bandwidth up to 160 Mb/s \rightarrow 80 Mb/s
- Compatibility with existing ATLAS SCT DAQ ROD hardware
- Front-end for two signal polarities, 3 to 12 cm long silicon strips
- Minimum power circuit techniques
- Delay adjustment for control and data signals
- Similar “core” functionality as for the present silicon strip tracker: signal amplification, discriminator, binary data storage for L1 latency, readout buffer with compression logic, and data serializer.

Submission is imminent: Engineering run should be delivered in less than 13 weeks

Order for ~140k$: 2-6 wafers of an engineering run + 24 production wafers (400 chips/wafer)
ABCN : FRONTEND Development in 250nm technology

128 Channels
Front-End opt. for Short Strips
0.7mW/channel

Digital part : reuse of existing SCT protocols, SEU protections, 80Mbits/sec output rate, power control, 2mW/channel @2.5V

ABCN 250nm is an intermediate version of the FE chip for modules prototypes developments

Serial regulator to provide analogue from a unique digital+ analogue power source

Shunt regulators (2 options) to exercise 2 different serial powering systems

From F. Anghinolfi
Powering and readout are grouped for several modules and a pre-integration is considered on a ~1m long stave (or Super-Module).
Electrical Prototypes

- 30 modules with ABCD & serial power

 \(\text{(ABCDnext will be 30 V)}\)

 \textit{From C. Haber (LBNL)}

- Ceramic hybrid directly glued onto Silicon

- 2 adjacent modules glued on a stave

\textit{Cartigny, June 11th 2008} \hspace{1cm} \textit{ATLAS Upgrade, Didier}
Module Integration – Thermal FEA

Sl-wafer

T\textsubscript{max} = -22.3 \degree C

ASIC’s

T\textsubscript{max} = -14.5 \degree C

Double-sided Module: 24W

Excellent performance with respect to the thermal runaway

K.P. Streit Preview 05.06.2008

sLHC

Temperature (\degree C)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

0 5 10 15 20 25 30

\(\Theta (\text{Si}) \cdot T = 0 \degree C \text{ (mW/mm}^2 \text{)} \)

Cartigny, June 11th 2008

ATLAS Upgrade, Didier
Proposed DCS Architecture

Option 2

Option 1

PS Crate

LAN

CAN Bus

Global Interlock

Matrix

Ibox

BBIM

DCS Type 2 cables

SDC

DCC

DAQ

ROD

BOC

5 GB/s optical link

Data/DCS

BBIM

SCT

SCT

SCT

SCT

SCT

Environmental (Super-Module)

Hybrid Temp

Hybrid Power

Cooling Temp

PS Type 2 → Type 4 cables

Channel Interlock

LHCC Upgrade, July 1st 2008

D. Ferrere

D. Ferrere – PO April 08
End-insertion Stave/SM

- **Flexibility**: Barrel structures can be assembled before the SMs are integrated → Flexibility of the assembly procedure
- **Time saving**: No need to test a fully populated barrel after another and then integrate the 5 barrel layers → Time saving about ~1 year (2-3 months per layer)
- **Parallel work**: Assembly of the structure can be done in parallel with the SM/Stave production. Time saving can be considered!
- **Rework**: The rework or replacement of a SM could occur even late (even after the commissioning). But when final services installed access is difficult!
- **SM/Stave replacement** could happen in any working area (few light jigs).

End-insertion concept presented to work fine with a mockup demonstrator (June 4th 2008)
1 single ID element Integrated and commissioned at the surface building
ATLAS is considering to be ready with an Upgrade detector from 2016.
The ATLAS ID will be completely renewed and is in a design and specification phase.
The major challenges are: Service and material reductions, Cooling, Powering scheme, schedule, ...
Significant efforts in working groups started to tackle all the new challenges.
Frequent working meeting organized and review sessions processed.
The evaluation of the new sensors technology, the FE Asics and the module electrical functionalities will be a major step in the near future.
Next event:
- ID Upgrade Workshop Nov 2008 at Nikhef