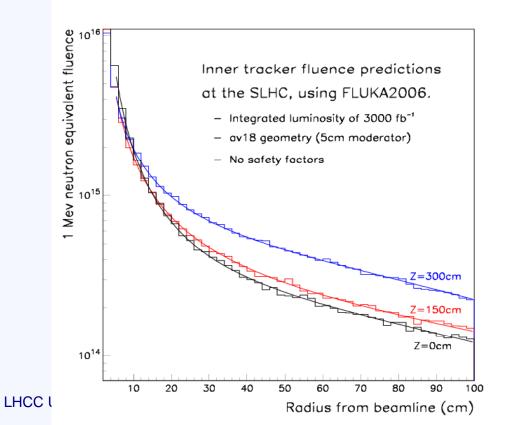
Comments on physics goals Need for Upgrade ATLAS Detector - changes needed Organisation, R&D projects Schedule, length of shutdown

# Comments on physics motivation

- Covered in previous talks
- Best to look at talk by Michelangelo Mangano in SLHC-PP kick off meeting and references he gives
  - http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=29254
- Most studies so far are based on premise the upgraded detector performs as well at sLHC as current Atlas does at LHC
  - Need considerable simulation effort to be more realistic
  - Need to get data from LHC to understand the current performance
- Physics goals depend on what early data reveals
  - Need results from LHC
- Expectation is to record ~3000 fb-1 each experiment for substantially better statistical precision and discovery reach

# Need for Atlas to upgrade

## Peak luminosity

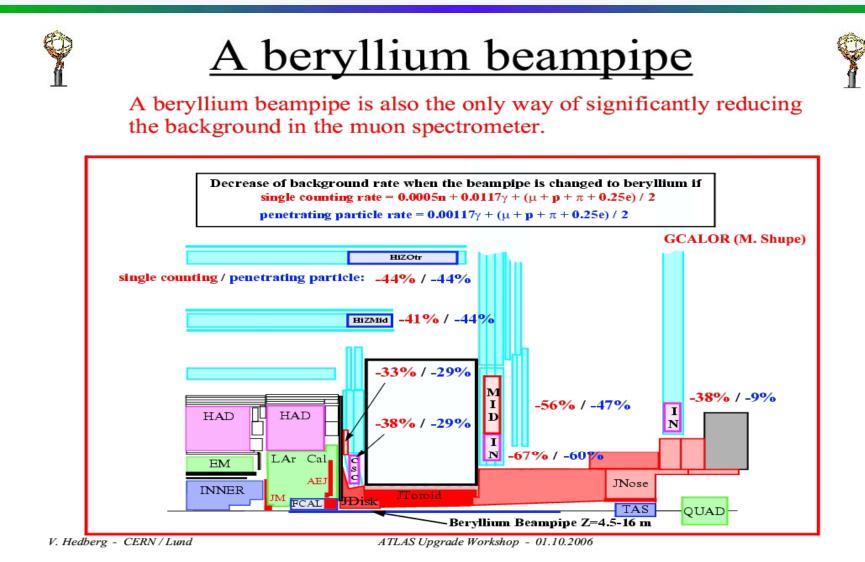

- Current detectors have limits on the peak luminosity they can handle
  - Pixel readout:
    - OK up to 2.10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>; efficiency suffers at 3.10<sup>34</sup>; poor b-layer performance at 4.10<sup>34</sup>
  - TRT occupancy gets high already at 2.10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - Muons designed with safety factor 5, so depends on how much of this is `used up' at nominal
- Integrated luminosity
  - Some detectors will suffer significant radiation damage:
    - Pixel b-layer will need replacement before sLHC (2013 or soon after)
    - Rest of ID will need replacement @ 730 fb<sup>-1</sup> ~ coincides with sLHC
    - Calorimeters need new electronics long before end of sLHC
- Error bars
  - After 5 years steady running, you need 15 years at same rate to halve an error bar
- Others
  - Improved technology, other repairs, ...

# **Radiation Background**

- The background will be challenging
- Shielding is already ~close to optimal
  - Expect backgrounds to be ~10x LHC
- But some improvements possible
  - e.g. 5 cm polymoderator on cryostat wall (lan Dawson Fluka studies)
  - Be beampipe

R(cm) 1017 100 80 1016 60 -10<sup>15</sup> 40 20 1014  $\cap$ 100 150 200 250 300 350 400 50 0 Z(cm)

1 MeV neutron equivalent fluence




#### Nigel Hessey

# **ATLAS Changes: overview**

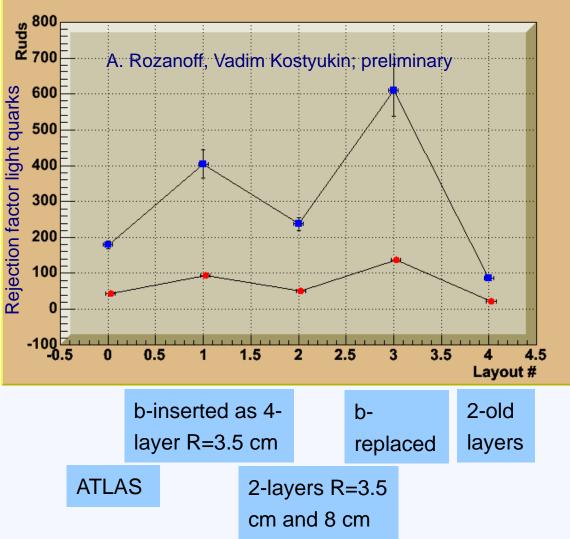
- Pixel b-layer: ~2013 or soon after
- Whole inner tracker for sLHC
- Calorimeters
  - New readout electronics
  - Possibly new forward detectors
- Muons depends on backgrounds
  - At least new forward chambers
  - Better shielding
  - All-Be beam pipe in the hall
- TDAQ
  - Several possibilities for improvement
  - Aim is to keep trigger accept rates constant at each level
    - (so rejecting 10 times as much, and writing ~10 times as many bytes)

# Berillium beam pipe



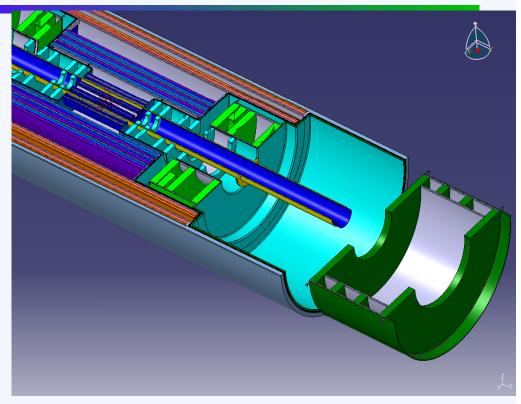
- Reduces rate up to a factor 3
- No other shielding option had a big effect
- Expensive? No much cheaper than new muon chambers

1 July 2008


Nigel Hessey

LHCC Upgrade Meeting

7


# Pixel b-layer

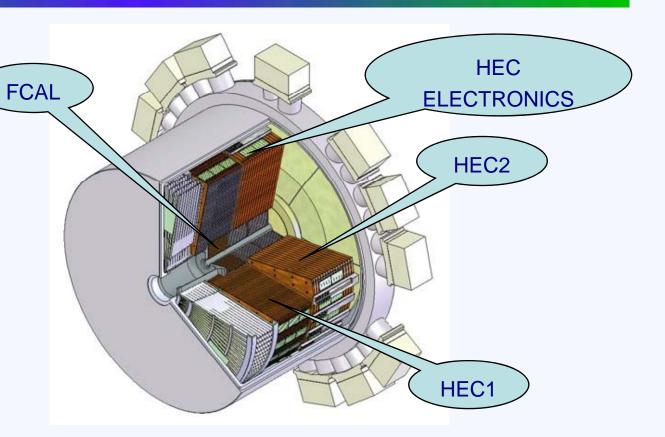
- We have realised past ~12 months that replacing the b-layer cannot be done in a normal shutdown
- B-layer task force (BLTF) set up to investigate the options
- It is clear the b-layer cannot be guaranteed to be functioning after 2013, and certainly not up to the time of full inner tracker startup
- Looking at possibilities for rapid replacement of beam pipe itself, and of inserting a new b-layer, inside the old one.
- Preliminary studies with new technology predict good performance

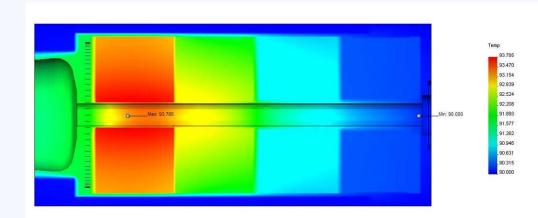


# **New Inner Tracker**

- ID needs complete replacement
  - Radiation damage limit 730 fb<sup>-1</sup>
  - Peak luminosity limit ~3.10<sup>34</sup>
    - Pixels, TRT
  - All Si tracker proposed
    - 4 layers pixels
    - 3 layers short strips (~25 mm)
      - Keep occupancy down
    - 2 layers long strips (~100 mm)
    - Aim is max. 1 % occupancy
    - Illustration is "projective barrel"
      - Currently moving to fixed length barrel
  - Look at other b-layer technologies
    - 3D, diamond, thin-Si, gas (Gossip)
  - Strips and pixel covered in more detail this afternoon

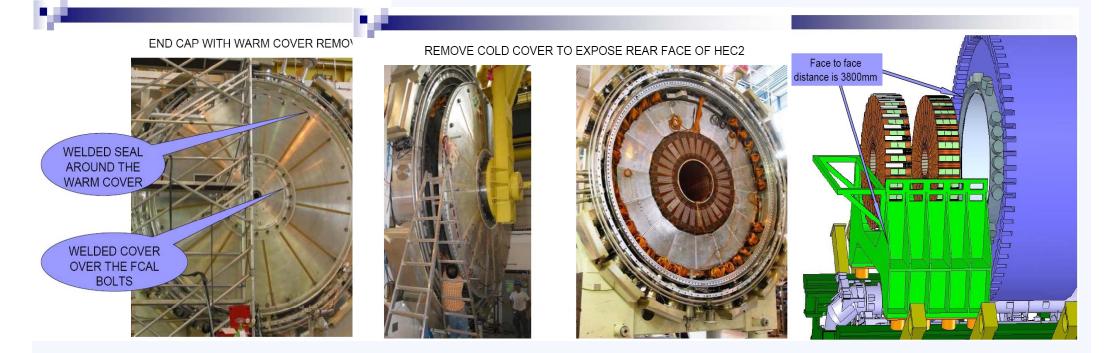



Many changes needed: new sensors; serial/dc-dc powering; CO2 cooling?; readout architecture, data multiplexing; front end ASICs; material - tends to increase due to smaller granularity; innovate to keep minimum.


Very short time scale for assembly, especially considering how long the current ID took.

LHCC Upgrade Meeting

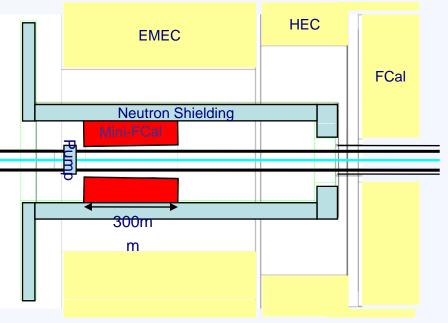
# LAr


- Will replace most readout electronics
  - Readout all data and make trigger off-detector?
    - Several R&D projects to investigate this possibility
- Endcaps:
  - Highest rates occur in the FCAL
  - Possible problems:
    - Boiling of liquid Ar?
    - Charge build up
    - Voltage drop over HV resistor





# LAr (cont)


- May need to open up FCAL
  - Replace with ready-made new FCAL with better cooling, smaller gap
    - Avoid boiling Ar, reduce ion build up etc.
  - Replace HEC electronics in cryostat
  - Further improvements investigated for in-pit work



# LAr: Warm cal?

- Possibility under investigation to insert a new small calorimeter in front of the FCAL
- It reduces heat flux and ionisation by factor ~2 (e.m. component)
- Could remove the necessity to open up
- Testbeam studies ongoing at Protvino to see where the limits are - see talk this afternoon

# Mini-FCal (Front)



# Tiles

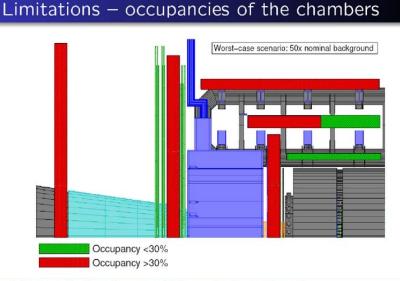
- Tiles, fibres, PM: expected to survive
  - Small decrease in performance after 7 years LHC running
  - Even at the end of sLHC running they will be working fine though worst regions may have significantly less light
  - So do not expect major detector parts to be changed (only Crack scintillator)
- Readout Electronics: rad hardness, maintainance, trigger needs all benefit from new readout
  - Further studies of rad-hardness needed
  - Also advantages of reading out all data apparent to be studied (R&D proposals)
  - Conclusion may well be to replace most of FE electronics
  - RODs: new trigger schemes or readout all data will require changes to RODs

# Tiles (cont.)

- Power Supplies:
  - Low voltage supplies insufficiently rad-hard (die in first year of sLHC) and expensive to maintain after 10 years, plus hope of better performance if replaced
    - Expect to replace all for sLHC
    - Long lead time (7 years?) so need to start soon
  - Local HV for PMT's may be rad-hard enough; needs to be studied



# Muons


- Muon background rate uncertain:
  - Find out soon!
  - Allowed safety factor 5
  - If not needed, then most muon chambers can cope with sLHC rates
  - Will need to replace chambers in forward region
  - R&D underway to select technologies
  - Some (micromegas and TGC) carry out both trigger and precision measurements simultaneously
    - Leave more space for better shielding
  - Be beam-pipe also very important

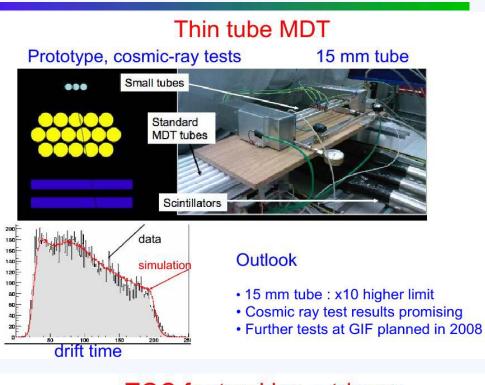
#### Limitations – occupancies of the chambers



At least half of the chambers in the inner end-cap disk would have to be replaced by chambers with higher high rate capability.

#### If safety factor not needed




Almost all chamber would have to be replaced.

...Worst case

#### 1 July 2008

# Muons - example of chamber R&D

#### Micromegas for tracking + trigger · Very high rate tolerance measured in kHz/mm<sup>2</sup> · Good spatial and time resolution Micromégas Low cost (potentially) Drift gap Bulk MicroMegas (industrial technologies) - use of wire mesh - PC board technology Ampl. gap 🗄 50-100 µm Goal: gas gain up to ~104 $\sigma_x < 100 \,\mu m$ $\sigma_t < 5 \text{ ns}$ For EI (+ inner EM) region, size ~ $1x2 m^2$ with tracking + trigger in a single detector unit. (good, because of the limited space) 12.02.2008 T. Kawamoto



#### **Prototype chambers**



# 45 x 35 cm<sup>2</sup> (2 of the biggest MMs ever made)



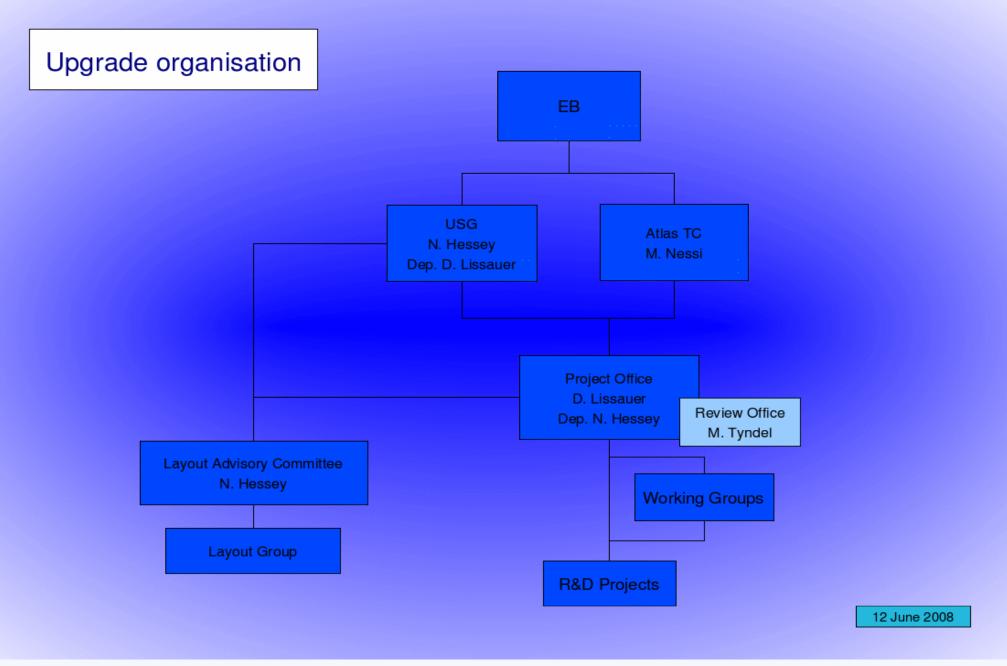
### TGC for tracking + trigger Prototype chambers tested at T9 (Oct/Nov. 2007)

1.5mm and 2 mm strip

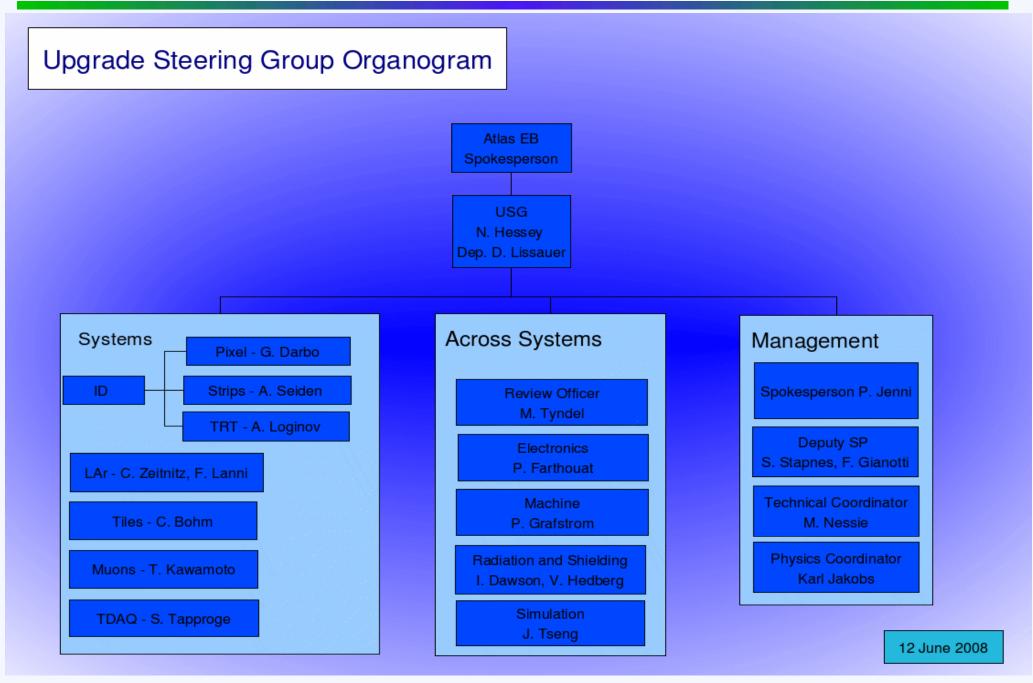
Charge readout

# Encident angle(deg)

#### LHCC Upgrade Meeting


1 July 2008

**Nigel Hessey** 

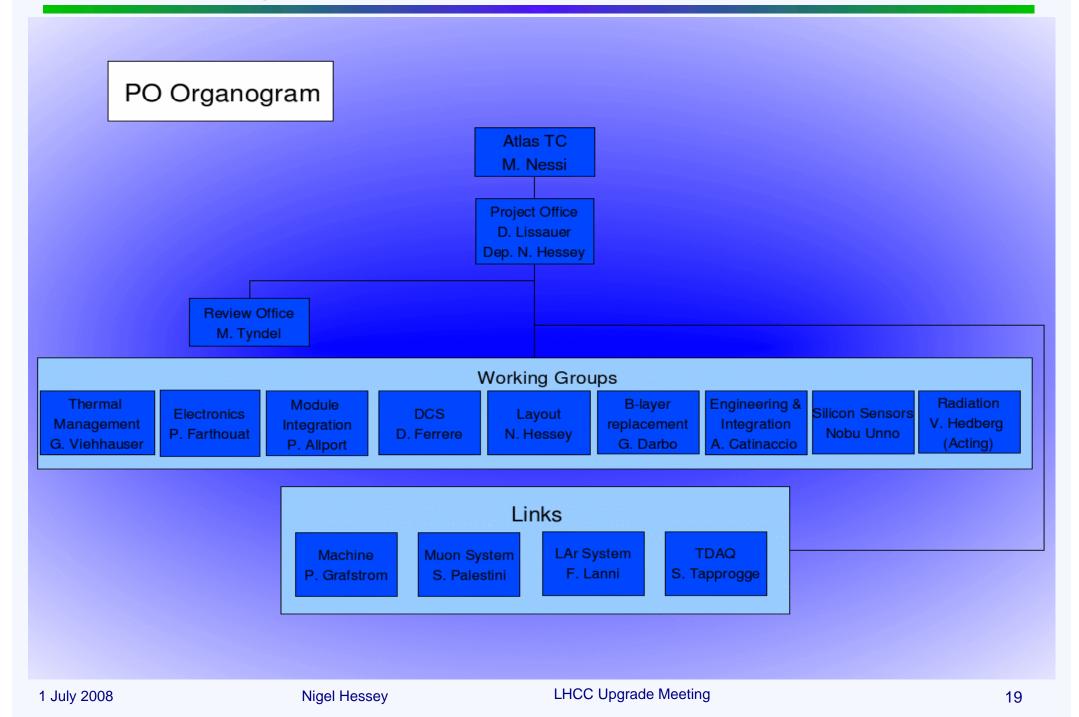

# TDAQ

- Baseline is to maintain trigger rates at the different levels
  - That means rejecting 10 x as many events in the same time
  - Writing ~10x as much data
- Look into various possibilities:
  - Higher LVL1 latency
  - Higher LVL1 rate very difficult
  - Fast track trigger with associative memory (FTK) listen in on LVL1 readout
  - Combining trigger objects ("topological trigger")
  - Level 1 track trigger looks very challenging
  - As mentioned, calorimeters may read all data giving more trigger flexibility
  - Need to study trigger rates as function of Pt and pile-up:
    - How well will current schemes work?
    - Need experience with current set-up

# **Organisation - overall**



# **Organisation - Steering Group**




1 July 2008

**Nigel Hessey** 

LHCC Upgrade Meeting

# Organisation - Project office and review office



# **R&D** Projects

- Impressive list of R&D projects underway
  - 29 proposals or Lol's
  - 14 fully approved
  - 1 not for ATLAS
  - Rest at various stages (mostly Eol)
- See web:

http://atlas.web.cern.ch/Atlas/GROUPS/UPGRADES/proposalSummary.xhtml

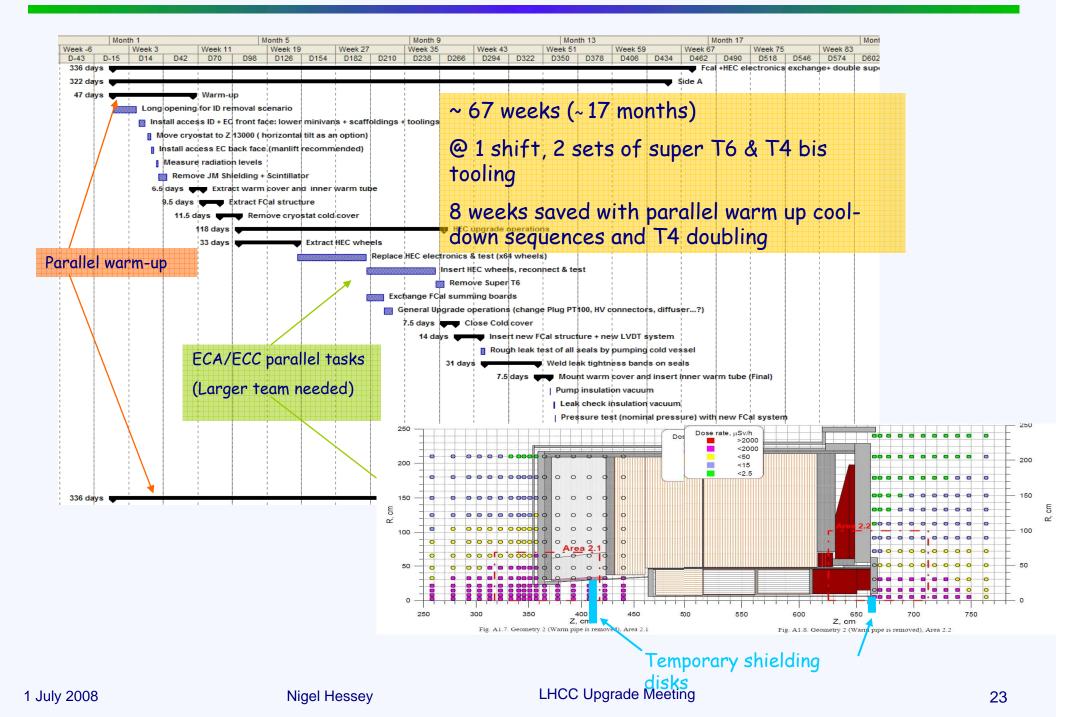
- Approval can help obtaining funding funding agencies know it is relevant
  - But they need a coherent picture of needs, timing etc.

|                  | Short name<br>(click for full<br>proposal) | Title                                                                                                                                                         | Principle<br>contacts                | Status                             |
|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|
| rojects          | Opto                                       | Hadiation Test Programme for the ATLAS Opto-<br>Electronic Readout System for the SLHC for ATLAS<br>upgrades                                                  | Cigdem Issever                       | 30/06/08<br>Approved by EB         |
|                  | Staves                                     | Development and Integration of Modular Assemblies<br>with Reduced Services for the ATLAS Silicon Strip<br>Tracking Layers                                     | C. Haber, M.<br>Gilchriese           | Approved by EB                     |
| ıy               | ABCNext                                    | Proposal to develop ABC-Next, a readout ASIC for the<br>S-ATLAS Silicon Tracker Module Design                                                                 | E. Anghinotti, W. Dabrowski          | Approved by EB                     |
|                  | Radiation BG                               | Radiation background benchmarking at the LHC and<br>simulations for an ATLAS upgrade at the SLHC                                                              | lan Dawson                           | Approved by EB                     |
|                  | n-in-p sensors                             | Development of non-inverting Silicon strip detectors for<br>the ATLAS ID upgrade                                                                              | Harlmut<br>Sadrozinski               | Approved by EB                     |
|                  | SiGe chips                                 | Evaluation of Silicon-Germanium (SiGe) Bipolar<br>Technologies for Use in an Upgraded ATLAS Defector                                                          | Alex Grilo, S.<br>Fiescia            | Approved by EB                     |
|                  | 3D Sensors                                 | Development, Testing, and Industrialization of SD<br>Active-Edge Silicon Radiation Sensors with Extreme<br>Radiation Hardness: Results, Plans                 | Sherwood Parker<br>now Cinzia Da Via | Approved by EB                     |
|                  | Modules                                    | Research towards the Module and Services Structure<br>Design for the ATLAS Inner Tracker at the Super LHC                                                     | Nobu Unno                            | Approved by EB                     |
|                  | Powering                                   | Hesearch and Development of power distribution<br>schemes for the ATLAS Silicon Tracker Upgrade                                                               | Marc Weber                           | Approved by EB                     |
|                  | Segmented Stra                             | R&D of segmented straw tracker detector for the<br>ATLAS Inner Detector Upgrade                                                                               | Vladimir<br>Peshekhonov              | Not approved as ATLAS<br>relevant  |
|                  | Gossip                                     | H&D proposal to develop the gaseous pixel detector<br>Gossip for the ATLAS inner Tracker at the Super LHC                                                     | H van der Graaf                      | Full proposal requested            |
| <u>khtml</u>     | SoS                                        | Expression of Interest: Evaluations on the Silicon on<br>Sapphire 0.25 micron technology for ASIC<br>developments in the ATLAS electronics readout<br>upgrade | Jingbo Ye                            | Approved by EB                     |
| g agencies       | Thin pixels                                | FI&D on thin pixel sensors and a novel interconnection<br>technology for 3D integration of sensors and<br>electronics                                         | H-G. Moser                           | Approved by EB                     |
|                  | Muon Micromeg                              | H&D project on micropattern muon chambers                                                                                                                     | V. Polychronakos,<br>J. Wotschack    | Approved by EB                     |
|                  | TGC                                        | H&D on optimizing a defector based on TGC<br>technology to provide tracking and trigger capabilities<br>in the MUON Small-Wheel region at SLHC                | G. Mikenberg                         | Proposal received by<br>USG        |
| s, timing        | MDT Readout                                | Upgrade of the MDT Headout Chain for the SLHC                                                                                                                 | R. Richter                           | Expression of interest<br>received |
|                  | MDT Gas                                    | R&D for gas mixtures for the MDT detectors of the Muon Spectrometer                                                                                           | P. Branchini                         | Expression of interest received    |
|                  | Selective reado                            | Upgrade of the MDT Electronics for SLHC using<br>Selective Readout                                                                                            | R. Richter                           | Expression of interest<br>received |
|                  | Migh rate MDT                              | RaD on Precision Drift-Tube Detectors for Very High<br>Background Rates at SLHC                                                                               | R. Richter                           | Expression of interest<br>received |
|                  | Diamond                                    | Diamond Pixel Modules for the High Luminosity<br>ATLAS Inner Detector Upgrade                                                                                 | M. Mikkuz                            | Approved by EB                     |
|                  | ID Alignment                               | ID Alignment Using the Silicon Sensors                                                                                                                        | H. Kroha                             | Expression of interest received    |
|                  | Fast Track Trio                            | FTK, a hardware track linder                                                                                                                                  | M. Shochet                           | Approved by EB                     |
|                  | Versatile Link                             | The Versallie Link Common Project                                                                                                                             | Francols Vasey                       | Sent to CB for comments            |
|                  | LAr FE Electron                            | R&D Towards the Replacement of the Liquid Argon<br>Calorimeter Front End Electronics for the sLHC                                                             | G. Brooljmans                        | Eol Received                       |
|                  | LAr Optolink                               | H and D of a radiation resistant high speed optical link<br>for the ATLAS Liquid Argon Calotimeter readout                                                    | Jingho Ye                            | Eol Received                       |
|                  | LAr ROD                                    | Hesearch and Development of Headout Driver (HOD)<br>for the upgrade of the Liquid Argon Calorimeter Front-<br>End Readout                                     | Hucheng Chen                         | Eol Received                       |
|                  | FCAL cold                                  | Development of new ATLAS Forward Calorimeters for the Upgrade                                                                                                 | J. Hutherfoord                       | Eol Received                       |
| LHCC Upgrade Mee | e(LVL1-Calo                                | ATLAS Level-1 Calorimeter Trigger Upgrade                                                                                                                     | N. Gee                               | Eol Received                       |
|                  | Tile Electronice                           | The Cohermater Electropes for the of HC                                                                                                                       | C Bohm                               | Eal Received                       |

C. Bohm

Eol Received

Tile-Electronics Tile Calorimeter Electronics for the sLi


# **Towards Atlas Upgrade approval**

- R&D groups hopefully will grow into the collaborations that build the upgrade
- As shown by Steinar, we need LoI, TP/TDR, Core cost document, MoU etc.
  - WP3 of SLHC-PP project
  - Needs a lot more work
    - Propose series of "ATLAS Upgrade Weeks" starting next year to spur this on
      - At CERN, working and decision making meetings
      - Parallel (systems) and plenary sessions
- Schedule:
  - Aim to be ready for the earliest possible date things might be needed
    - 2015?
  - Need to know and understand machine expectations to fix this
  - Have to limit R&D and choices to meet tight schedule, especially Inner Tracker
    - e.g. with more time, cheaper pixels may be possible allowing more layers (and less strips).
  - Important to be coherent with LHC and CMS

# Length of shutdown

- We plan to carry out the installation of all new detectors with only one year of lost beam
  - With slightly longer shutdowns either side, we aim at 18 months
  - This we believe can be achieved with different ways of doing things
    - e.g. LAr FCAL in the pit
    - New inner tracker fully assembled above ground and installed as one piece
      - It fits (just)
  - Implies considerable re-use of services
    - Especially ID many services are under muon chambers
    - Complicates and may limit some options
  - LAr is also challenging, but we believe it can be done
    - Needs investment:
      - Cooling/warm-up in parallel
      - Double up tooling, new designs
    - Need to check interferences with muon, ID etc. work
    - Need to study radiation levels goes for all installation work

# Pit work...

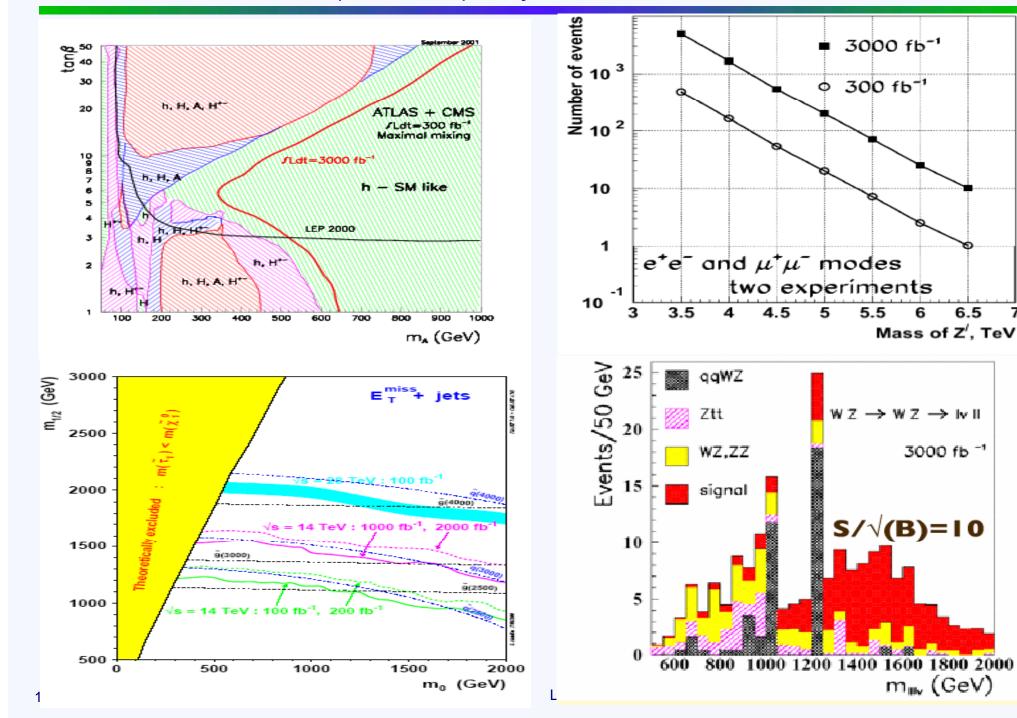


# Summary

- A lot has started for the ATLAS Upgrade plans
  - Currently aiming to install in 2015 as earliest it could possibly be needed
- There is a long way to go
- We need an agreed schedule with machine and CMS
  - Only one year of shutdown, same year for everyone
- It is very important to get experience with the current detector before freezing choices
  - But then we will have very little time to implement the designs

# More info

# (Some of) Physics motivation


6.5

3000 fb -1

m<sub>III</sub> (GeV)

7

6

