

Pixel/B-layer Developments

LHCC Upgrade Session CERN, 1 / 7 / 2008

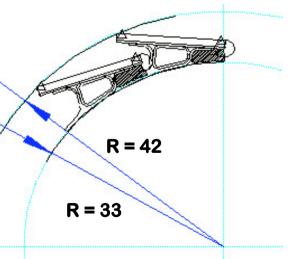
G. Darbo - INFN / Genova

Agenda Page:

http://indico.cern.ch/conferenceDisplay.py?confId=36149

ATLAS Pixel Upgrade

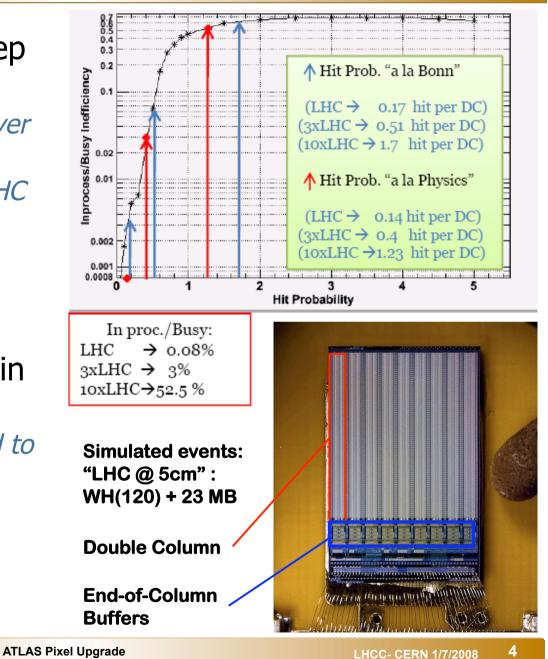
B-Layer Replacement



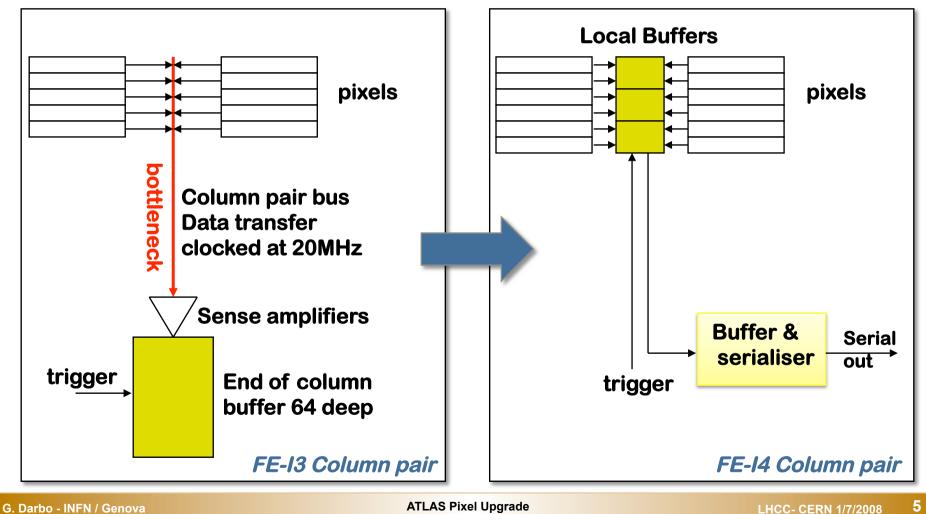
- Detector designed for 300 fb⁻¹, could probably withstand to 400fb⁻¹ or a bit higher with reduced efficiency;
- *integrated dose acceptable even with margin of error until 2013, but not until 2016*
- Details are very dependent on operating conditions (temperature, warm-ups)
- Hard detector failures requires to have a replacement
- - B-layer cannot be replaced in a long shut down (8 months) requires extraction of the pixel package, opening the whole detector (also beam pipe cannot be extracted without opening of pixel package -> special tooling and procedure to make in situ)
 - Other options as a simpler 2 hit system with present technology (case of disaster) not realizable (collaboration to make, spares not available)
 - Study the insertion of a smaller b-layer and a smaller beam pipe inside the existing detector

B-Layer Replacement - Insertion

Study a smaller radius B-layer to insert in the existing Pixel

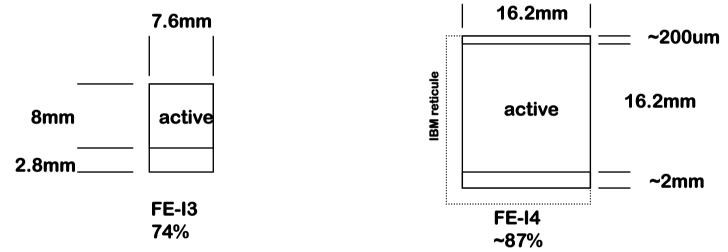

- It seems feasible (or not unfeasible) but not demonstrated yet;
- 16-staves (present module "active" footprint gives hermetic coverage in phi) not shingled b-layer. Requires new smaller beam-pipe (long procurement time, dimensions will be known after LHC operation 2009);
- Module technology: tracking hermetic requires new module design increase live area of the footprint:
 - New chip design (FE-I4) live fraction, I/O bandwidth;
 - Sensor increase radiation hard (smaller radius and ramping up LHC luminosity).
- *R&D and prototyping in 2009 construction 2010-2012;*
- Services need feasibility studies and solutions.

Limit of FE-I3 Architecture


Inefficiency is a very steep function of hit rate:

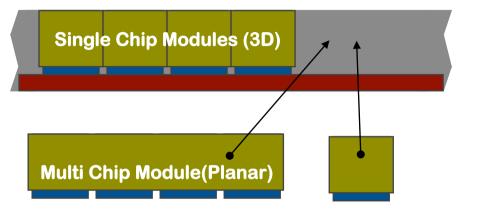
- Inefficiency is small for B-layer at nominal luminosity;
- Very much at the limit for LHC "Ultimate Luminosity"
- Unacceptable for B-layer @ 3.6 cm in 2016 and SLHC
- Bottleneck is congestion in the double columns:
 - All hits has to be transferred to the EoC buffers;
 - What are the architecture changes...

Obvious Solution to Bottleneck


- >99% or hits will not leave the chip (not triggered)
 - So don't move them around inside the chip! (this will also save digital power!)
- - Possible with smaller feature size technology (130nm)

FE-I4 Chip Size

- Larger live fraction of FE-I4 will make possible to meet the tight mechanical constraints of the B-layer replacement
- Larger chip will reduce bump-bonding costs mainly driven by chip placement.

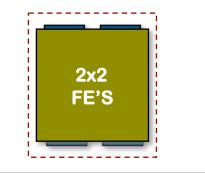


	FE-I3	FE-I4 goals	
Analog A/cm ² (active)	130mA	80mA	~same voltage as now
Digital A/cm ² (active)	85mA	80mA?	Lower voltage
Total power/cm ² (active)	385mW	240mW	Nominal (not worst case)
WORST CASE for MODULE (<u>footprint</u> !)	500mW/cm ² (used for mech. design)	?*	Take FE-I3 absolute, scale factor, or do " <i>stand alone</i> " estimate?

B-Layer & SLHC Communalities

- The FE-I4 will not be enough for B-Layer at SLHC.
- FE-I4 hit rate target fits well the SLHC environment in the range R=12÷30cm.
- B-layer @ SLHC will need new front-end design: FE-I5.

Pre-tested stave structure with integrated bus and cooling, SMD and burned-in power adapters

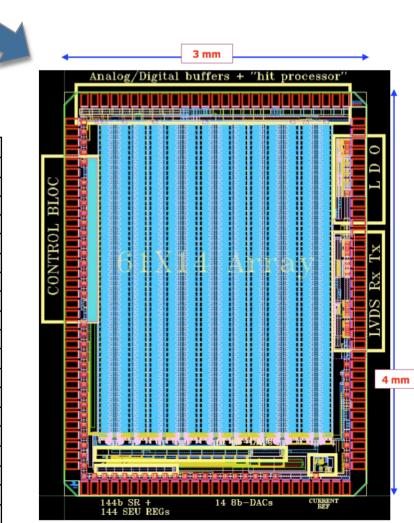


Robotically placed, fully tested 1-chip or multi-chip modules. Wire bond to stave after placement.

Radius (cm)	# Events	Hits/FE-I3 Module	FE-I3 Module (Mb/s)	FE-I4 (Mb/s)
5.05	23	18.7	48.6	3.0
5.05	230	156.9	407.9	25.5
5.05	230	156.9	407.9	102.0
5.05	400	320.0	832.0	208.0
12.25	400	40.0	104.0	26.0
3.5	230	320.2	832.5	208.1
3.5	400	556.9	1447.9	362.0
	Z	Х		
Module Size	60.8	16.4		

SLHC

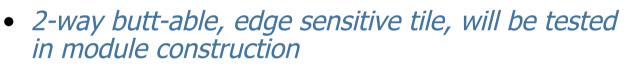
2x2 chip modules for external layers @ SLHC.

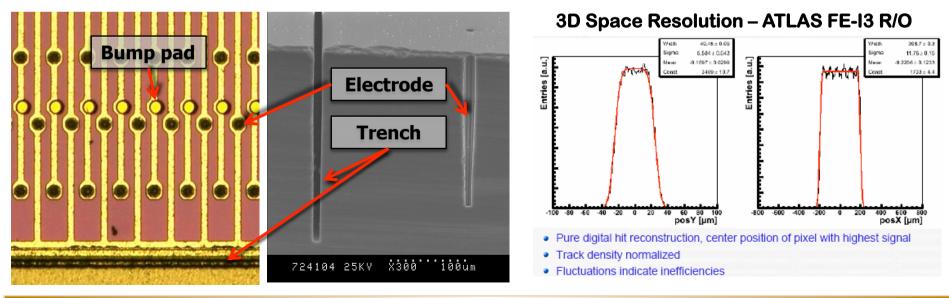


Prototyping - Pixel Collaboration Chips

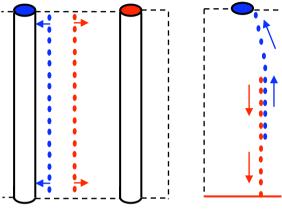
- Pixel (FE-I4p) and Opto chips submitted 24/3/08:
 - Prototypes for new FE-I4 in 0.13 μm CMOS
 - Designing labs: Bonn, Genova, LBNL, Marseille, Nikhef,

Pixel size	50 x 250	μm^2
DC leakage current tolerance	100	nA
Pixel array size	\geq 64 x 320	Col x Row
Normal pixel input capacitance range	300-500	fF
Long pixel input capacitance range	450-700	fF
In-time threshold with 20ns gate (400pF)*	4000	e
Hit-trigger association resolution	25	ns
Same pixel two-hit discrimination (time)	400	ns
Single channel ENC sigma (400fF)	300	e
Tuned threshold dispersion (max)	100	e
Charge resolution	4	bits
ADC method	TOT	
Operating voltage range	1.2 - 1.5	V
Total analog supply current @400fF	10	μA / pixel
Radiation tolerance (specs met at this dose)	200	MRad
Average hit rate	200	MHz/cm ²
Trigger latency (max)	3.2	μs
Single chip data output rate	160	Mb/s
Maximum trigger rate	200	KHz
Total digital supply current @ 100KHz	10	μA / pixel


Pixel Oriented R&Ds


10 R&Ds where Pixels are involved have been (or will be) submitted

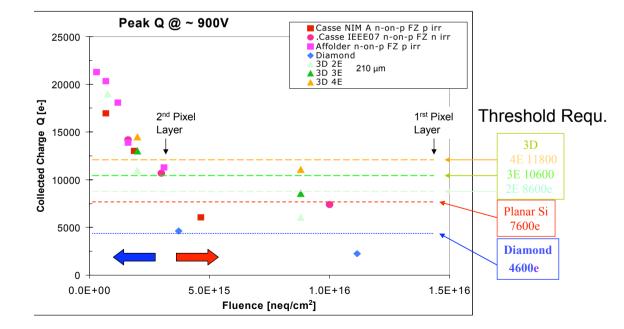
Doc no.	Short name	Title	Institutes	Status at 30/6/2008
ATL-PA-MN-0001	Opto	Radiation Test Programme for the ATLAS Opto-Electronic Readout System for the SLHC for ATLAS upgrades	Taiwan, Ljubljana, Ohio, Oklahoma, Oxford, SMU	Approved EB
ATL-PA-MN-0007	3D Sensors	Development, Testing and Industrialization of Full-3D Active-Edge and Modified-3D Silicon Radiation Pixel Sensors	<i>CNM Barcellona, Bonn, Freiburg, Genova (Milano), Glasgow, Hawaii, LBNL, Manchester, Oslo, SINTEF Oslo, Prague, MBC/Stanford, IRST Trento, Valencia</i>	Approved by EB
ATL-P-MN-0012	R/O Architectures	Read-out Electronics for the ATLAS upgraded tracker		
ATL-P-MN-0016	Gossip	R&D proposal to develop the gaseous pixel detector Gossip for the ATLAS Inner Tracker at the Super LHC (SLHC)	NIKHEF, SACLAY, Twente	EoI Received
ATL-P-MN-0035	Versatile Link	The Versatile Link Common Project	CERN, Strasbourg, Oxford, SMU Dallas.	Sent to CB for comments
ATU-RD-MN-0008	Powering	Research and Development of Power Distribution Schemes for the ATLAS Silicon Tracker Upgrade	BNL, Bonn, CERN, Krakow, LBNL, RAL, Wuppertal, Yale	Approved by EB
ATU-RD-MN-0010	Thin Pixels	R&D on thin pixel sensors and a novel interconnection technology for 3D integration of sensors and electronics	MPI Munich	Approved by EB
ATU-RD-MN-0012	Diamond	Diamond Pixel Modules for the High Luminosity ATLAS Inner Detector Upgrade	Bonn, Carleton, CERN, Jožef Stefan Institute, Ohio State, Toronto	Approved by EB
ATU-RD-MN-XXXX	Planar Pixel	R&D on Planar Pixel Sensor Technology for the ATLAS Inner Detector Upgrade	<i>Prague, LAL Orsay, Bonn, HU Berlin, TU Dortmund, MPP Munich, MPI Munich, Udine, Liverpool, UNM Albuquerque, UCSC Santa Cruz.</i>	EoI to Submit
ATL-RD-MN-XXXX	Pixel Local Supports	Research and Development Local Supports for Pixel Detector Upgrades		EoI to Submit


3D Sensors Basics

- Decoupled directions: track traversal versus drift field.
 - Shorter traveling distance, more charged collected.
- Active edge: Deep Reactive Ion Etching (DRIE) trench can replace saw dicing.
 - Edge itself is an electrode

Planar and 3D Charge Collection Principle

ATLAS Pixel Upgrade



Planar Sensors

- R&D on planar silicon technologies mainly to reduce cost, increase radiation tolerance and reduce inactive area:
 - Bulk material: n-type (n-on-n current pixel sensor) or p-type (single side cost effective)
 - Thin sensors (50÷75µm thickness): reduce volume leakage current (noise, power)
 - Active edge: no need of shingling or double face stave for hermetic coverage
 - *Slim edge: guard rings from 1100µm to ~100µm*

Diamonds

- No cooling;
- No leakage current;
- Small capacitance -> small noise;
- High radiation hard -> B-layer

Hartmut F.-W. Sadrozinski, LBL Pixel Upgrade, May 22, 2008