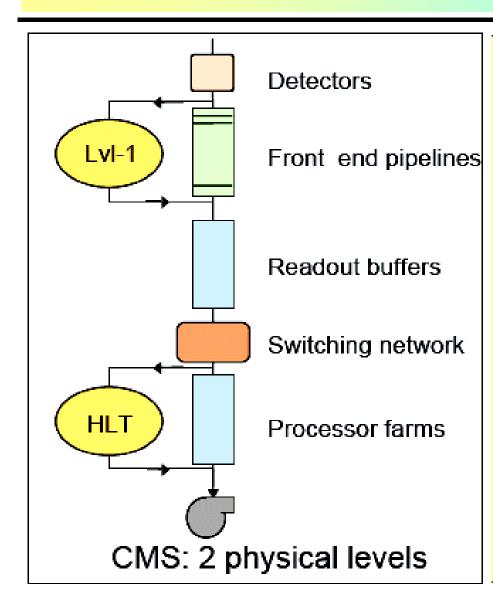

Lv-1 Tracking Triggers with CMS at SLHC

Outline:

- > The CMS Lv1 Trigger System
- > Trigger Rates at SLHC
- > Tracking Trigger Upgrades
- Organization and Plans

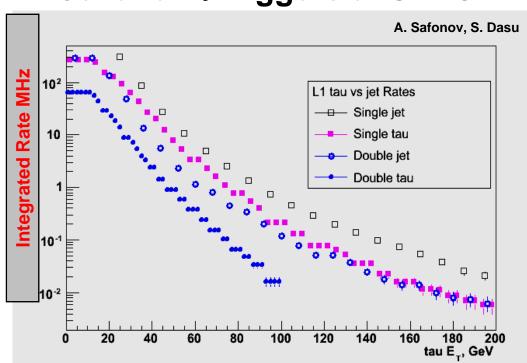
Minimum Bias Events

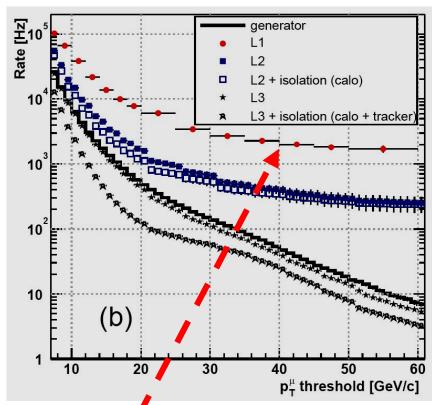

- SLHC (10³⁵; 80 MHz): 110

- SLHC (10³⁵; 40 MHz): 220

- SLHC (10³⁵; 20 MHz): 440

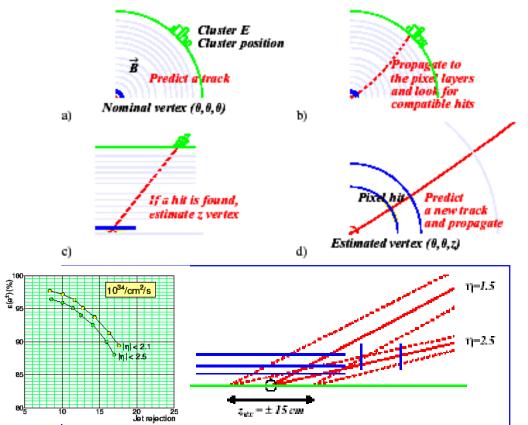
The Current CMS Lv1 Trigger

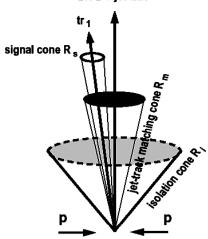



- 40 MHz Lv1 input rate
- 100 KHz Lv1 output rate
- 3.2 μsec latency
- Event Size 1-2 Mbytes
- Level-1 Trigger: Custom made hardware processor using data from the calorimeter and muon systems.
- High Level Trigger: PC Farm.
 Uses data from the calorimeter,
 muon as well as the Si-Trackers.
 Reconstruction software and
 event filters similar to the offline
 analysis.

Trigger Rates at SLHC

Jet and τ-triggers at SLHC





- At SLHC Electron, tau, muon and jet triggers will fire in the 10⁶ Hz region (LHC Thresholds)
- Keeping the same thresholds as at LHC may be desirable if one wants to study possible LHC signals with more statistics.
- Even if one wished to raise threshold it would not help as shown here in the muon trigger case.

Getting Trigger Ideas for SLHC from the CMS HLT

LvI-2 τ-iet axis

1	L=	10 ³⁴ cr	n ⁻² s ⁻¹						
.9	Pxl	Tau.T	igger	Ωn fir	st.Cal	o jet			
	- 1	R _s =0.		is va	ried 0	2-0.5			
.8		R _M ≡0	10					±	
.7	-	<u> </u>						····	<u></u>
.6				<u> </u>	Ŷ `				
۰۰.	-		4	*					
.5	-	<u> </u>	`		M _H	500	∃eV		
.4				,	M _H	200	۷٠		

	Rate (Hz)		
Level	Single	Double	
Level-1	6200	1700	
Level-2	700	35	
Calo isolation	590	25	
Level-3	100	10	
Level-3+calo +tracker isolation	50	5	
Total	55		

Muon Trigger:

- Outer tracker
- Large rejection

Electron Triggers:

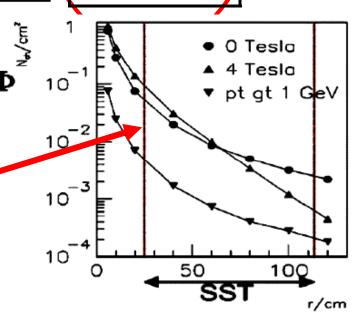
- A factor of 10 reduction using hits in the pixels
- A factor of 3 using the outer tracker

Efficiency for QCD events

Tau Trigger:

- Uses isolated stubs in the pixels
- A factor of 10 in QCD jst rejection

Triggering Challenges at SLHC



R	Hits/ bin	Hits	hits/bin	Occup.	Occup.
(cm)	in	/bin	/electron	(2×10^{33})	(1×10^{35})
	plateau	/event		hits/cm ² /	hits/cm ² /
				25 nsec	12.5 nsec
4	2500	0.250	0.0625	0.35	8.8
7	1100	0.110	0.0275	0.15	3.8
10	650	0.065	0.0162	0.09	2.3

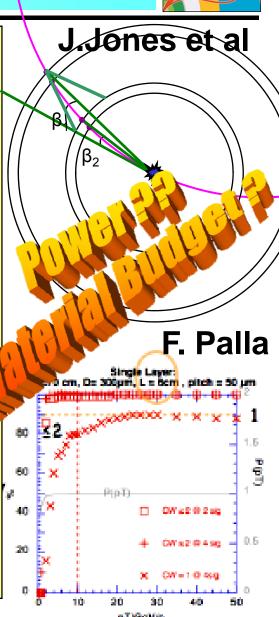
Occup. (10³⁵)
hits/cm²/
25 nsec

17.6
7.6
4.6

- Expected data rates from the Inner tracker are very large resulting to ~10¹ TBytes/sec/cm²
- This rate needs to be reduced on the detector.
- 90% of the rate comes from particles below
 1 GeV in Pt

Proposals/Ideas for Tracking Trigger

Stacked Tracker:

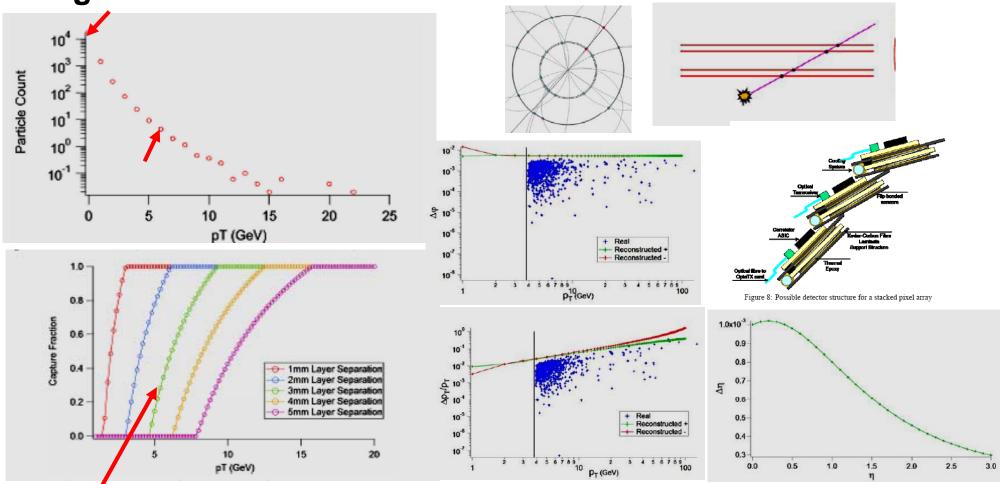

- Coincidences between two layers of pixels placed
 mm apart.
- Amounts to a low Pt cut.
- Advanced FPGAs on uTCA cards execute off detector algorithms.
- Requires sophisticated electronics on Si-Tracker

Selective Readout:

- Requires identification of objects first with the calorimeter/muon triggers
- Extrapolation and readout only of the relevant sections of the Si-Tracker
- Latency could be a problem

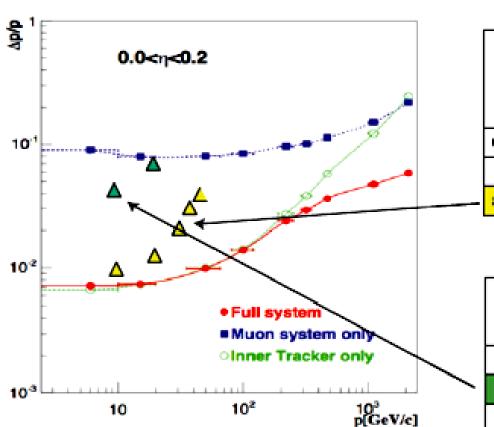
Associative Memories:

- Relies on cluster width to reduce the data on detector
- Associate memories are used to process the data off detector



Example: Stacked Tracker Approach

Singe Stacked Detector


Double Stacked Detector

- A 2 mm separation cuts Pt<5 GeV
- Double Stack would allow extrapolations to the calorimeter and muon systems

Improving the Resolution of the CMS Muon System

fit of 2 points (in two TOB layers) and the vertex constraint, strip pitch of 200 µm

Radius (cm)	Δ Pt / Pt (%) for different Pt (GeV/c)						
of two layers	10	20	30	40	50		
61.0-108.0	0.8	1.1	1.6	2.1	2.6		
61.0-86.8	1.1	1.8	2.8	3.5	4.4		
86.8-108.0	0.9	1.5	2.3	3.0	4.0		

Radius (cm) of 3 layers:4.4, 10.2, 25.0

No vertex constraint

Pixel pitch	Δ Pt / Pt (%) for different Pt (GeV/c)			
	10	20		
100 µm	7.5	14.5		
50 µm	4.3	7.2		
20 µm	2.7	3.2		

The CMS muon system trigger resolution will improve dramatically if one includes information from the Si-Tracker

Off-Detector Electronics for SLHC

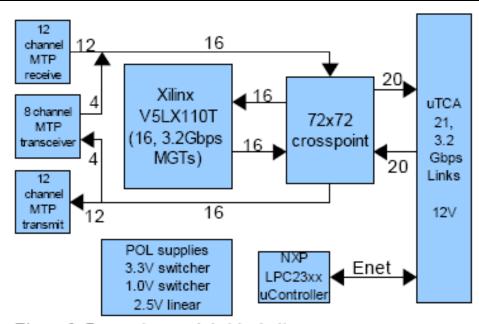
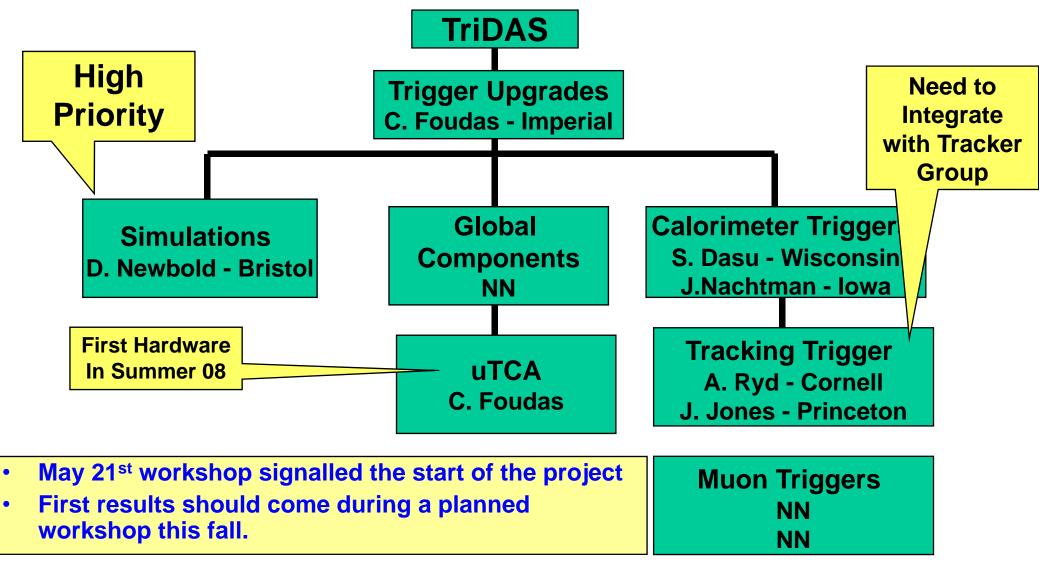


Figure 2: Processing module block diagram


Figure 1: micro TCA crate with single high backplane

- A standard trigger platform is under development based on the uTCS telecom Standard.
- This platform is designed to accept data from different detectors to support a Lv1 tracking trigger.
- We wish to investigate the question whether this platform can replace all Lv1 trigger off detector electronics and become a CMS-wide standard.
- This would reduce significantly manpower and R&D costs

CMS SLHC Trigger Project

10

Summary

- CMS has an active group to pursue future Lv1 Trigger upgrades.
- Simulation Studies have already started in collaboration with the tracker upgrades group and this is a priority at the moment.
- Hardware demonstrators in uTCA will be available soon and may be useful in LHC also.
- An enormous amount of work is ahead of us...