Benchmarking of rms-Emittance Growth Simulations with UNILAC Experiments

L. Groening, W. Barth, W. Bayer, G. Clemente, L. Dahl, P. Forck, P. Gerhard, I. Hofmann, G. Riehl, S. Yaramyshev, *GSI, Germany*

D. Jeon, ORNL, U.S.A.

D. Uriot, CEA/Saclay, France

R. Tiede, University of Frankfurt, Germany

- Introduction and set-up
- Data reduction
- Reconstruction of initial distribution
- Results of experiment and simulations
- Emittance growth reduction by rms-matching
- Summary

Phys. Rev. ST Accel. Beams 11 094201 (2008)

Situation 2003

- Design of future high-intensity machines relies on prediction of codes (Linac-4, SPL, FAIR p-linac, GSI UNILAC & RAL upgrade
- Many codes exist that simulate beam dynamics in a DTL
- Some codes have been benchmarked against each other (Nath, Ryne, Stovall, SNS; Ostroumov, ANL; Franchi, GSI; ...)
- Code-code benchmarking assumed: periodic lattices, matched beams, design emittances, initial distributions from text book
- Within CARE a benchmarking of codes with beam experiments was conducted, i.e.
 - real machine lattice with intersections that interrupt periodicity
 - non-perfect matching
 - emittances larger than design values
 - limited knowledge of initial conditions (no 6d-diagnostics available)
 - initial distributions different from text book distributions
- Objective: to what extend we can rely on the predictions of codes ?

6 5 1

- 5 independent rf-tanks
- 108 MHz
- 192 rf-cells
- F-D-D-F focusing
- Inter-tank focusing : F-D-F
- Synchr. rf-phases (30°,30°,30°,25°,25°)

G 5 1

Experimental Set-up & Procedure

- set beam current to 7.1 mA of ⁴⁰Ar¹⁰⁺
- measure hor., ver. emittance and long. rms-bunch length at DTL entrance

- set DTL transverse phase advance to values from 35° to 90°
 - tune depression varied from 21% (90°) to 43% (35°)
- measure transmission, hor., and ver. rms-emittance at DTL exit

Measurement

- projection of 6-dim to 2-dim plane
- matrix of pixels
- finite pixel size 0.8 mm / 0.5 mrad
- evaluation based on pixel contents

to compare measurement and simulation adequately, the evaluation procedures must be identical

GSI

• full 6-dim information available

- particle coordinates from simulations are projected onto virtual meas. device
- projection is evaluated in the same way as a measurement

GSI

Reconstruction of Initial rms-Parameters

- 1. Selfconsistent backtracking finding $(\alpha,\beta,\epsilon)_{I}$ that fit to measured bunch length
- 2. Varification wether applied machine settings give full transmission w/o tails

GSI

Reconstruction of Initial Type of Distribution

measured in front of DTL

measured initial distribution inhabits different amount of halo horizontally and vertically

Reconstruction of Initial Type of Distribution

- Gauss, Lorentz, Waterbag, KV distributions do not fit the measured amount of halo
- Several functions tried in order to fit halo in both planes
- function found as:

H_IPP_I→

$$\frac{dN}{dV} = f(X, X', Y, Y', \Phi, \delta P/P)$$

$$\tilde{R}^2 = X^2 + X'^2 + Y^{1.2} + Y'^{1.2} + \Phi^2 + (\delta P/P)^2$$

$$f(\tilde{R}) \; = \; \frac{a}{2.5 \cdot 10^{-4} \, + \, \tilde{R}^{10}}, \ \, \tilde{R} \leq 1$$

$$f(\tilde{R}) \ = \ 0, \qquad \qquad \tilde{R} \ > \ 1,$$

applying different powers for different planes, the amount of halo can be reproduced in each plane separately

Initial Distribution and Codes

Simulations with four different codes as used by the participating labs:

DYNAMION (GSI) PARMILA (SNS) PARTRAN (CEA/Saclay) LORASR (Univ. of Frankfurt)

	Solver	Boundaries	No. of Part.	CPU Time	Rf-Gap
DYNAMION	3D-partpart.	open	$4.3\cdot 10^3$	20 h	tracking
PARMILA	PICNIC-3D	open	$2\cdot 10^5$	30 min.	non-linear kicks
PARTRAN	PICNIC-3D	open	$2\cdot 10^5$	30 min.	non-linear kicks
LORASR	PICNIC-3D	open	$2\cdot 10^5$	1 h	tracking

G 5 1

Shapes of Final Distributions (Horizontal)

 $\sigma_0 = 35^\circ$

Int / Int_max [%]		
0 – 5		
5 – 10		
10 – 20		
20 - 40		
40 -100		

- core: good agreement (ex. 35°)
- 90°: "islands" seen in exp. & sims

GSI

deviations at lowest densities

Evolution of Simulated rms-Emittances

HIPPI L. Groening, Benchmarking of rms-Emittance Growth Simulations with UNILAC Experiments, CARE Meeting 2008

Final 95%-rms Emittances as Function of Phase Advance

• codes reproduce the dependency on phase advance qualitatively

651

• differences w.r.t. to aboslute final emittance values

Final 95%-rms Emittances as Function of Phase Advance

• quantitative agreement among codes higher for the sum of transverse emittances

GSI

• reduced fluctuation of data points w.r.t. average behavior

Mismatch to Periodic DTL Solution

rms-tracking algorithm for reconstruction of initial distribution was used to estimate mismatch to DTL

G 5 1

- algorithm used to rms-match (incl. space charge) the initial distribution to periodic DTL
- test of matching by re-measuring emittance growth (one year later)

• significant reduction of emittance growth by rms-matching including space charge

651

• reduction demonstrates that algorithm to reconstruct initial rms-values is valid

Reduction of Mismatch (Benchmarking with DYNAMION)

- rms-emittance growth along a 5-tank DTL measured for 12 phase advances from 35° to 90°
- Measurements simulated using four codes (DYNAMION, PARMILA, PARTRAN, LORASR)
- Special emphasis put on reconstruction of amount of halo of initial distribution
- Codes describe well the behavior of measured sum of hor. and ver. emittances
- Systematic reduction of rms-mismatch to DTL under space charge conditions
- Predictions of codes agree to measurements for well-matched beams
- rms-mismatch reduction resulted in considerable emittance growth reduction
- Codes can predict qualitative dependency of emittance growth
- Absolute values depend from the code
- Predictions are more accurate for matched beams
- Accurate predictions on halo characteristics seem still very hard to be achieved

6 5 1

Development of UNILAC Beam rms-Brilliance during CARE

HIPPI L. Groening, Benchmarking of rms-Emittance Growth Simulations with UNILAC Experiments, CARE Meeting 2008

-GSi-

Definition of fractional rms-Emittance

rms-emittance from a fraction of p% of the total intensity

- calculate sum \sum_{100} of all pixel contents
- sort pixels from top by their contents
- sum them up until the fraction p from \sum_{100} is reached
- use the pixels included in this sum for rms-emittance evaluation

Construction of initial Distribution for Simulations

Alvarez 1st Tank

- measured long. rms-Twiss parameters seemed not realistic, just bunch length ok
- DTL transmission is very sensitive to 36 MHz buncher setting, i.e. long. mismatch
- applied buncher settings resulted in full DTL transmission and minimized low energy tails
- -> useful in re-constructing the long. input distribution by simulations
- transv. and long. emittance were measured at different locations, i.e. at "t" & "l"
- distances from "I" and "s" to point "A" differ by 0.4 m
- to merge transv. & long. measurements together some approximations (tricks) were used

• to merge measurements together some approximations (tricks) were used :

- "transport" from "I" to "s" approximated by drift of 0.4 m (with space charge)
- at "t": combine measured x&y-rms-Twiss parameters with guessed long. rms-Twiss parameters
- rms-tracking with space charge from "t" to "s-0.4m", using applied machine settings
 - if bunch length at "s-0.4m" agrees reasonably with measured one at "I": -> ok
 - if not: -> do different guess on long. Twiss parameters at "t"
- put "s"-rms-Twiss parameters (x,y,l) into matching routine
- compare suggested 36 MHz-buncher settings with those used during experiment
 - agreement: -> ok, distribution reconstructed
 - no agreement: -> do different guess on long. Twiss parameters at "t"