Low p_T non-photonic electron production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Kunsu OH (kunsuoh@gmail.com)

Kunsu OH Pusan National University

Pusan-Inha Physics Workshop 2015 (PIP2015)

- Motivation I : Heavy flavor in HIC
- Motivation II: Recent NPE results
- Status of low p_T NPE analysis in detail
 - Inclusive electrons

 - Reconstruction of photonic electrons background Partner finding efficiency

• Summary

Kunsu OH (kunsuoh@gmail.com)

Outline

• Motivation I : Heavy flavor in HIC

- - Inclusive electrons

 - Partner finding efficiency

• Summary

Kunsu OH (kunsuoh@gmail.com)

Outline

• Motivation II : Recent NPE results Analysis Technique!

• Status of low p_T NPE analysis in detail

• Reconstruction of photonic electrons background

Motivation

- Heavy Flavor in heavy-ion collisions

 - Using the HF as a probe to study properties of the QGP and their dependence on e.g. system size and energy.
- Non-photonic electrons (NPE)
 - Semileptonic channel has high B.R. of open heavy flavor mesons.
 - Easy for triggering and identification.

• HF quarks are primarily produced in **initial hard scattering**, and are exposed to the evolution of the hot nuclear matter created at RHIC.

• Comparable with direct reconstructed open heavy flavor mesons.

• Strong suppression is observed at high p_T.

Kunsu OH (kunsuoh@gmail.com)

Recent D meson results

• Indication of enhancement $p_T \sim 0.7 - 2.2 \text{ GeV/c}$, described by models with charm quarks coalescence with light quarks. $\rightarrow Low p_T NPE$ also?

Recent NPE results

Production of NPE suppressed at high p_T. Large systematic errors in PHENIX low p_T result. Low p_T NPE measurement is important for total charm quark cross section measurements.

Kunsu OH (kunsuoh@gmail.com)

The Solenoid Tracker At RHIC (STAR)

BEMC

EEMC

by Maria & Alex Schmah

BEMC

IE/dy

The Solenoid Tracker At RHIC (STAR)

by Maria & Alex Schmah

Non-photonic electrons(NPE)

D^{0} . D^{\pm} . B. Λ_{c} ...

- Photonic electrons :
 - Statistical subtraction by inclusive electrons.
 - Reconstruction method.
 - Photonic electron reconstruction efficiency :
- Non-photonic electrons :
 - Single electron reconstruction efficiency corrected.
 - Number of binary collision corrected.

Kunsu OH (kunsuoh@gmail.com)

• Inclusive electrons: Electron identification with TPC + TOF at low p_T .

- Embedding simulation for γ and π^0 Dalitz decay for reconstruction efficiency estimation.

PIP2015 Pusan

Photonic electrons(PE)

 $\gamma, \pi^0, \eta^0 \dots$

Inclusive electrons

- Au+Au 200 GeV 0-80% VPDMinBias dataset : ~200M events
- Inclusive electron is identified by **TOF+TPC**
 - - in TPC.

Kunsu OH (kunsuoh@gmail.com)

• There are many *mis-identified particles* in central collisions with high multiplicity.

• Mis-matched particle : Very fast particle make TOF hit instead of TPC hit particle.

• Merged particle : In the same path, there are 2 particles and measured double value of spcific energy loss

TOF merged π hit! \cdot mis-matched π

Inclusive electrons

How to estimate electron yield in Trash box.

- 1. Fill 2D histograms by eta, p_T and centralities.
- 2. Estimate *pure electron* sample to fix electron shape through conversion electrons.
- 3. Fix π , K, p shape with 2D fitting.
- 4. Fit the mis-matched kaons and protons at well separated momentum regions and fix N_{misK}/N_K and N_{misp}/N_p .
- 5. Fit all particles, electron, merged pion, mismatched kaons, protons, to obtain their yields.

р_т (GeV/c)

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

0.37 < pT < 0.38, |eta| < 0.1, 0-5% centrality

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

16

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

Kunsu OH (kunsuoh@gmail.com)

examples

PIP2015 Pusan

It is very tough job that inclusive electron estimation in central collisions.

Kunsu OH (kunsuoh@gmail.com)

examples

Inclusive electrons

How to estimate electron yield in Trash box. $\mathbf{\bar{f}}$

- 1. Fill 2D histograms by eta, p_T and centralities.
- 2. Estimate *pure electron* sample to fix electron shape through conversion electrons.
- 3. Fix π , K, p shape with 2D fitting.
- 4. Fit the mis-matched kaons and protons at well separated momentum regions and fix N_{misK}/N_K and N_{misp}/N_p .
- 5. Fit all particles, electron, merged pion, mismatched kaons, protons, to obtain their yields.

Inclusive electrons

How to estimate electron yield in Trash box. $\mathbf{\bar{f}}$ 1. Fill 2D histo ectron purit 2. Estimate pur shape throug 3. Fix π , *K*, *p* sł 4. Fit the mis-m 0.6 separated md and N_{misp}/N_p . 0.45. Fit all particl matched kao 0.2

Kunsu OH (kunsuoh@gmail.com)

PIP2015 Pusan

Photonic electrons

- - $\eta^0 \rightarrow \gamma \ e^+ \ e^- \ (B.R. = 0.70 \pm 0.07)\%$

Kunsu OH (kunsuoh@gmail.com)

• Photonic electrons need partner finding (photonic electrons reconstruction) efficiency correction.

Partner finding efficiency

- bias Au+Au collisions.

• Summary :

- Low p_T non-photonic electron production in heavy-ion collisions is being studied.
- Inclusive electron estimation method (2D fitting). \rightarrow Fitting optimisation is on going.
- Photonic electron yield estimation with Rec. method and corrected with π^0 and γ embedding simulation.

• Outlook :

- Systematic error study for low p_T NPE
- η and $K \rightarrow \pi^0 e^+ v_e$ embedding study
- The new HFT detector is installed : Measurement of $B \rightarrow e$ and $D \rightarrow e$ spectra separately.

Summary