Plans for the UT Cooling

LHCb infrastructure workshop February 19+20

Burkhard Schmidt for the UT group Input provided by Simone Coelli, Ray Mountain and Thomas O'Bannon

Overview

• Cooling needs:

- On-detector (stave) cooling
- Cooling for PEPI electronics
- $\rightarrow CO_2$
- \rightarrow most likely chilled water
- OFF-detector cooling (LV regulators, Maratons, HV etc.)
 → mixed water, as TT

• Gas needs:

The detector has to be operated in a controlled environment with very low humidity → dry air, as for TT

On-detector Cooling (CO₂)

Cooling requirements (EDMS document in preparation):

UT NORMAL OPERATING MODE			T_op = -30*C
Conditions: Box halves joined/sealed, electronics fully powered, full cooling (normal data-taking mode)			
SALT ASIC power	0.768 W/	ASIC assumption of 6	5 mW/ch
	761.9 W/	plane 👘 for each plane U	JTAX and UTAU
	847.9 W/	plane for each plane U	JTBX and UTBV
	3219.5 W/	UT	
SENSOR self-heating	12.2 W/	UT worst case total	, after 50 pb-1
DATA-FLEX power dissipation	323.2 W/	UT est., 10% of pow	ver carried
UT BOX load	100.0 W/	UT est. convective l	oad from environment,
(est. convective, radiative)		assumed minim	al, due to box insulation
BEAM-PIPE load	100.0 W/	UT est. convective l	oad from beampipe
(est. convective, radiative)		heaters	
TOTAL POWER LOAD	3754.8 W/	UT partial load	
	4505.8 W/	UT with 20% margin	n
	5000.0 W/	UT est. max expecte	ed with all loads included

- Fluid filtration: accessible and replaceable in technical stop
- UPS: All control parts and part of the system
- Pressure parts: Max design Pressure: 100 bar
- On stave stability: 1-2 °C

Development and definition of the evaporator system

- Design and test of the UT evaporator with vertical staves
 - A basic design together with a test program exists

The goal for the cooling distribution is to give the correct flow, using balanced pressure drop in the circuit.

The degree of freedom in the design is in the **input** cooling line diameter and length

Cooling pipe and flow configurations

Cooling for Peripheral Electronics

Power estimation:

- Total thermal load: < 3 kW distributed over 8 chassis.
- Max power per chassis: < 400 W
- Max power per DCB: < 15 W

Thermal management:

- Studies on thermal behaviour are planned this summer at Maryland:
 - evaluate the thermal resistances based on conduction cooled boards and wedge-locks

Present Plan:

 eliminate heat via coolant circulation, cold plates mechanically attached to the custom chassis sides with wedge lock guides

Conclusions

- Important studies on the thermal behaviour of the staves are planned for the coming months
 - They will allow us to finalize the design of the evaporator system
 - They form an important input to the Process and Instrumentation design (P&ID) of the cooling plant
- Studies are planned as well for the cooling of the peripheral electronics (PEPI)
 - They will have an impact on the integration of the PEPI system on the top and bottom of the detector