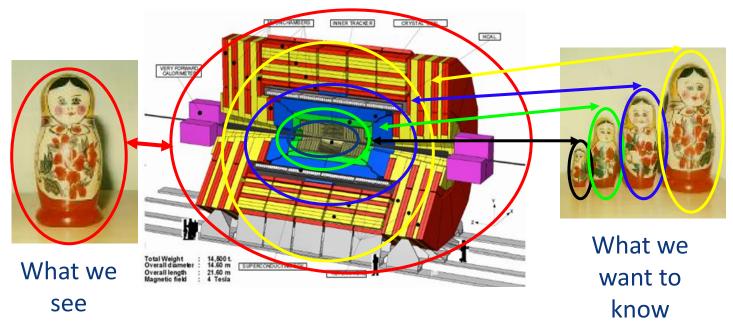
Infrastructure For LHCb Upgrade Workshop

February 20th, 2015

SURVEY EXISTING TECHNIQUES AND REQUIREMENTS

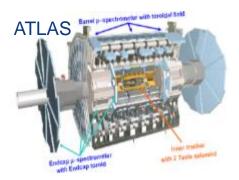
Jean-Christophe GAYDE, Pascal SAINVITU (CERN EN-MEF-SU-EM)

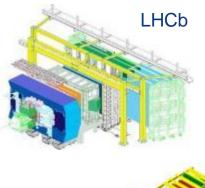

SU Experiment Metrology team

- SU-Experiment Metrology team is part of the Large Scale Metrology Section EN/MEF-SU
- Mandate:
 - The geometrical infrastructure for the detector installation
 - Detector metrology for assembly and alignment on the beam lines
 - The as-built measurements following with the installation phases
- This includes:
 - Prototypes
 - Deformation tests,
 - Quality control,
 - Pre-assembly and Assembly in surface halls or in the caverns
 - Alignment and Positioning

Detectors and Experiments

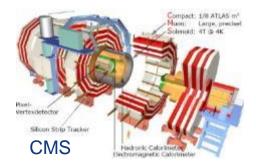
• A Russian Doll like configuration



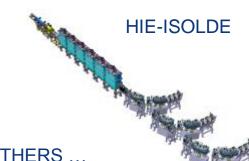

- Also true at detector level
 - Link between inner parts and external references;
 - Link between detector modules and the assembly fiducial marks
- Many coordinate systems to deal with such as:
 - Sub-detectors, detectors, physics and survey system, CCS ...

Where is SU-EM involved?

Survey for all the Experiments at CERN + ISOLDE and HIE-ISOLDE



LHC Experiments

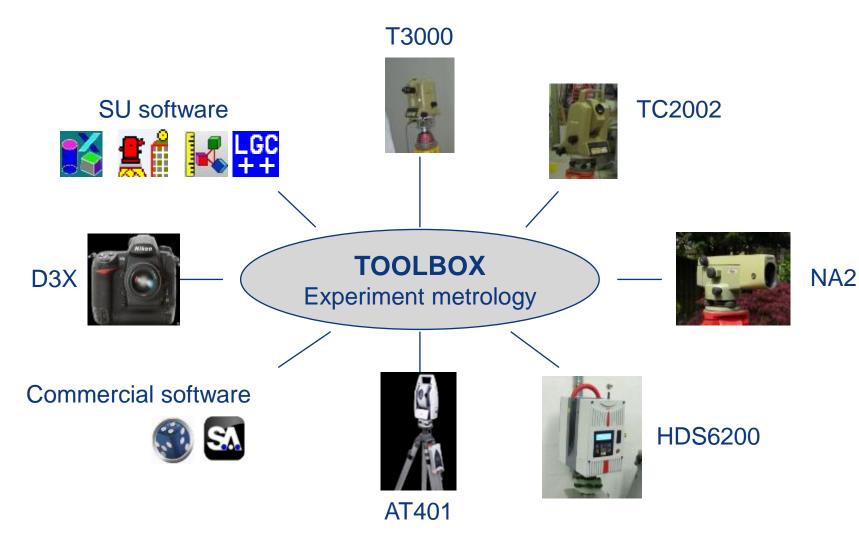

- ALICE
- ATLAS
- CMS
- LHCb

and Non-LHC

- NA61
- NA62
- CAST
- Isolde
- HIE-Isolde
- All experiments of North and East Areas
- etc.

AND OTHERS ...

When is SU-EM involved?


- At all phases of the projects:
 - At very early stage at the design phase
 - Prototyping and tests
 - Manufacturing
 - Pre-assembly
 - Assembly phases of detectors
 - Experiment construction

- Alignment and positioning phases in the caverns or experimental areas during construction, Technical Stops, Shutdowns, Machine Developments
- Usual measurement precision (at 1 sigma level)
 - Detector control at manufacturing before assembly 0.03-0.3 mm (max. 0.5 mm)
 - Deformation of detectors under special conditions ~ 0.1 mm
 - Relative position of detectors wrt other detectors < 0.5 mm
 - Absolute position of detectors wrt accelerator geometry < 1.0 mm

Survey Toolbox

ENCINEERING

Line of sight between instrument and object required!

20 Feb 2015

Photogrammetry

- Image acquisition needs no stable station
 - Photos taken on platform, scaffolding or cherry-picker
- Mobile System with 'high' precision
 - Off-site interventions in factory (Pisa, Aachen...)
 - Clean rooms, assembly halls and experimental caverns
 - Inner detector components < 1m (1 sigma < 50 microns)
- Limited measurement time for large amount of points
 - Short interruption for installation, production process
- Camera system
 - PC (windows XP, W7)
 - Nikon D2X–12MP / D3X–24MP (Full Frame)
 - Wireless module
 - Different lenses (17-28 mm)
 - Top flash, ring flash
- Software
 - AICON 3D Studio V. 10.0 DPA PRO

Photogrammetry

- References for scale
 - Carbon fibre scale bars (max. 1.5 m)
 - Geodetic measurements
- Targets
 - Coded / non-coded
 - Retroreflective / non-retroreflective
 - Button targets Hubbs / GMS / Aicon
 - Sticker targets of different types

System optimized for measurement of
signalized points only = highest precision
→ We have to access and touch the detector

Photogrammetry examples

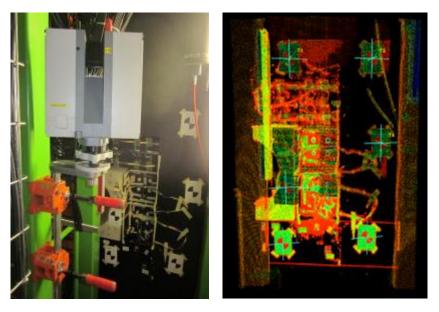
• Displacement and deformation of the Dipole coil during consolidation

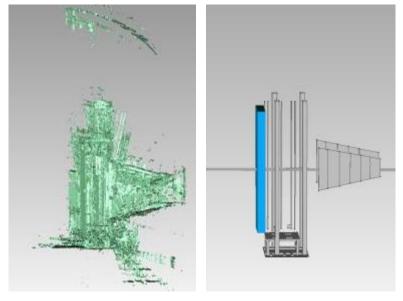
Photogrammetry of TT balconies and link to external fiducial marks

Leica AT401

- Laser tracker in "theodolite" housing
- As flexible and light as theodolite
- Measures on special prisms
- For different volumes (max. +/- 80 m) as :
 - experimental cavern network
 - individual detectors
- Instrument can be remotely controlled
 - ➔ automation possible (ALARA)
- Instrument has same support as theodolite
 - ➔ existing survey infrastructure can be used
- Specifications for precision
 - 15µm + 6µm/m MPE
 - 7.5µm + 3µm/m typical

Leica AT401

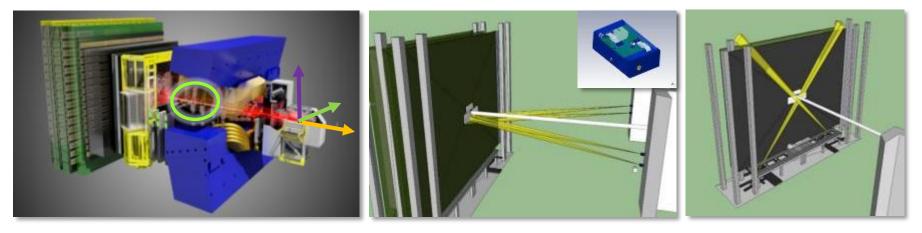

- AT401 is measuring with respect to previous equipment:
 - 5x better for distances
 - 2x better for angles
- Targets are prisms with 1.5" and 0.5" diameter and adapters
- Interchangeable tooling to photogrammetric and total station targets


Leica HDS 6200 3D Laser Scanner

HCAL module

- Up to 1 000 000 points/sec
- Phase shift distance measurement
- Point accuracy at 5m = +-3mm
- Spot size = 5.0mm @ 10m
- Field of view: 360° x 310°
- Point cloud as result

IT, OT and Dipole area

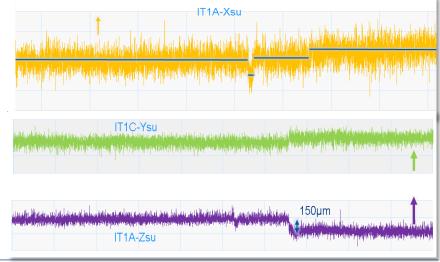


- As built / Integration
- Other 3D scanners existing
- Better precision
- ... Needed for upgrade?

Monitoring system development

- SU-EM is also involved in development of monitoring systems
- Example: IT monitoring system Collaboration SU-EM / LHCb / IT / EPFL

R&D



Low material target and support

Additional flash

First results

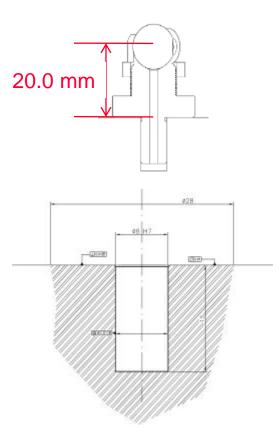
20 Feb 2015

SU-EM involvement must start at very early stage

- Discussion with coordinators / project leaders / physicists / engineers / designers
 - Define precisely the needs and find reasonable solutions
 - What has to be measured?
 - With respect to what?
 - At what stage?
 - Where?
 - What is the required precision / error budget?
 - Define all stages when survey will be needed
 - Include alignment to the design (references, integration work)
 - Define local coordinate systems
 - Estimation of the resources needs

impossible

This is extremely important


Standards exist / suitable

solutions can be discussed

Without this survey could be

Detector preparation

- Survey reference points / Fiducial marks
 - Different survey targets have to be placed on object
 - 3D survey reference hole
 - ➔ best solution, highest flexibility
- Define survey reference holes on detector
 - Already early in the design phase
 - Reference hole accessible and visible during ALL phases
 - At relevant position on stable support
 - On individual detector elements as later on assembled groups
 - For theodolite, laser tracker or photogrammetry
 - Coordinates are given at the centre of survey target
 - Sensitive elements are referred to reference holes by constructor

8H7 reference hole 28 mm contact surface 15 mm depth

WARNING: the values are given as indications Every new values must be discussed and agreed!

In order to help in the preparatory stages

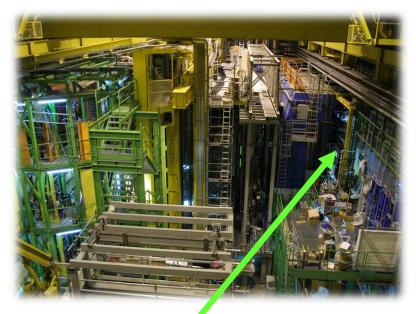
SURVEY QUESTIONNAIRE

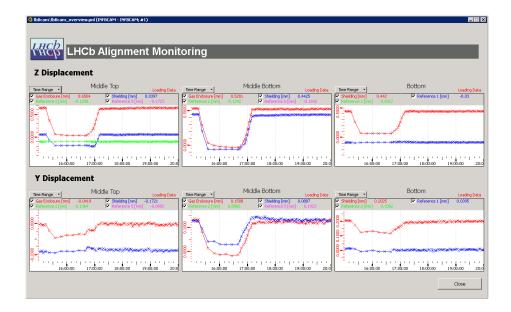
From : Fo : Date :	Jean-Christophe GAYDE EN/MEF-SU (see addresses below)				
EXPERIMENT		.LHCb			
NAME OF THE DETECTOR		.SciFi-Tracker			
NAME OF THE PEOPLE RESPONSIBLE		Proj. Leader: Ulrich UWER			
INSTITUTION		Univ. Heidelberg			
ADDRESS					
E-MAIL					
FAX					
coo	 Has your detector to be determined in the coordinate system of your experiment (i.e. in the data base of the off-line software)? 				1.0
2. From the geometrical point of view, is your yes no detector a single unit ? If not, how many pieces are they ?				no 	2.0 2.1

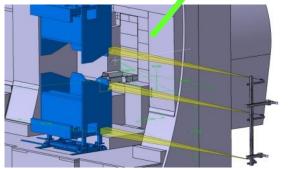
https://edms.cern.ch/document/1074957

Summary and future upgrade

- SU-EM can be involved in survey requests for detector upgrades
 - Design / Validation / Test phase / Construction / Installation
- Survey is flexible in method and can adapt it to working conditions
 - SU-EM decides as function of the constraints the optimal technique
 - Measurement equipment has progressed since LHC construction
- An early discussion for each individual detector is necessary
 - Permanent contact between SU and detector responsible
 - SU participation at early stages
 - Include survey needs in the design
 - > References carry the detector geometry information
 - > NO references \rightarrow High risk that NO precise survey can be performed!
 - Mechanical adjustment systems need also to be integrated
- Detector installation/maintenance will be more complex ALARA
- Questionnaire can be found at: https://edms.cern.ch/document/1074957






Thanks for you attention

LHCb RICH1 Gas Enclosure and Shielding monitoring

Monitoring during magnet ramp-up

- Proposal of a BCAM based monitoring system
- Coordination of the project with resources from LHCb
 - Integration / Design / Mechanic / Installation / Cabling
 - DAQ and processing software
- Integrated to the LHCb control system

Movement monitoring from the LHCb Ctrl Room with a precision of 30 microns

