EN-EL and LS2 Gerard CUMER, EN-EL

Infrastructure for LHCb Upgrade workshop - Session I: Power, electronics, cable

from Thursday, 19 February 2015 at 14:00 to Friday, 20 February 2015 at 18:15

Presentation outline

- Part 1 : Overview of CERN's electrical network
- Part 2 : Power Quality _ Statistics
- Part 3 : Maintenance plan Availability
- Part 4 : EN-EL LS2 organization methods constrains

Overview of CERN's electrical network

Part 1

CERN's Electrical Network (geographical overview)

E

Equipment : HTB (400 kV & 66 kV)

- 6 feeders 400 kV
- 3 transformers 400/18 kV
- 2 transformers 400/66 kV
- 15 feeders 66 kV
- 7 underground transmission lines (66 kV)
- 3 transformers 66/18 kV 3*70 MVA
- 5 transformers 66/18 kV 5*38 MVA

3*70 MVA 5*38 MVA

3*90 MVA

2*110 MVA

Equipment : HTA (20 kV to 3.3 kV)

- 8 stations 20 kV
- 100 stations 18 kV
- 22 stations 3.3 kV
- 1000 protection relays
- 900 feeders 18 kV
- 220 feeders 3.3 kV

LHC8_18 KV substation

- 600 Transformers 18/0.4 kV & 18/3.3 kV
- 7 Thyr. controlled Compensators 18 kV
- 1 Saturated Reactor Compensator 18 kV
- 12 Harmonic filters 18 kV
- 6 diesel generators 6.3 kV & 3.3 kV

900 MVA 458 MVAr 120 MVAr 357 MVAr

13 MVA

Equipment : LV

- 400V distribution
 - 26000 feeders regular power distribution
 - 4300 feeders diesel generators distribution (safety)
 - 2200 feeders UPS distribution (uninterruptible)
 - 3200 feeders machine distribution
 - 10 diesel generators totalling 5.5 MVA
 - 250 UPS

Control

- 430 battery chargers 48 VDC
- 13 battery chargers 110 VDC
- 300 Ni/Cd batteries
- 100 open & sealed lead acid batteries
- 1700 feeders 110/48 VDC distribution

LHC8_LV substation

Type of loads

- General services (infrastructure) Fire/Smoke/Gas detection and extraction... • Alarms transmission and communications systems... • Ventilation/pressurization systems, lifts, safety lightings... ٠ Power converters Magnets Normal Network Safety Network **Pulsed Network** Klystrons for Radio Frequency Machine - Exp Network Cryogenic compressors Cooling tower pumps . Chilled water pumps • Vacuum pumps . Electronic racks • Heating
 - Power converters

LHC8 – LHCb : HV Electrical Network Single Line Diagam

18 kV Normal Infrastructure

18 kV Machine and Experiment Network

11

LHC8 – LHCb : LV Electrical Network Single Line Diagam

Power Quality

Part 2

Transient disturbances (< 1s) : LHC response

Voltage transients affecting the LHC

Main parameters of the LHC LV distribution system

Date: 2000-09-29

Engineering Specification

MAIN PARAMETERS OF THE LHC 400/230 V DISTRIBUTION SYSTEM

Abstract

This document gives the data of the CERN 400/230 V power distribution system, susceptible to be of interest for a large number of users installing their equipment at CERN. The parameters of the network are given, together with explanatory notes whenever necessary. The document also presents requirements, that the user's equipment must fulfil. Finally recommendations with respect to performance are given.

This document provides information about CERN 400/230V power distribution system. It allows user to design their equipment with proper margins. It contains requirements and recommendations.

Transients & Power cuts : stats and duration

Duration

16

Maintenance _ availability

Part 3

Powercuts for safety tests and maintenance

• Safety tests :

system	Maintenance plan	powercut
CERN safety networks	every year	10 mn (except UPS)
Emergency Stops tests	every year	1 day

• Maintenance

Equipement	Maintenance plan	powercut	
Transformers	every 3 years	1 day	
HV switchboards	every 6 years	1 day	
LV switchboards	every 9 years	1 day	
UPS	every year	1 day _ no powercut, charge not protected	
Generator set Diesel	every year	1 day _ no powercut, charge not protected	
48V batteries	every year	1 day _ no powercut	

Type of LV networks and their availability

AUG

Types	See mains perturbations ?	Switched off by AUG ?	Back up by Diesel set ?	Downtime ?
 Normal EBD	Yes	Yes	No	Yes Mains downtime
Machine ERD - EZD	Yes	Yes	No	Yes Mains downtime
Experience racks EXD	Yes	Yes	No	Yes Mains downtime
Assured EAD	Yes	Yes	Yes	Yes ~ 15s
Safety ESD	Yes	No	Yes	Yes ~ 15s
UPS EOD	No	Yes or No	Yes or No	No Battery autonomy
48 VDC ECD	No	No	Yes	No Battery autonomy

EN-EL LS2 Organization & methods Part 4

EN-EL Mandate

- The EL group is responsible for the CERN electrical distribution network from 400kV to 400/230V. Its main missions are to **operate**, **maintain, extend and renovate the network**, analyse and make projections for CERN electrical energy consumption and manage relations with the energy suppliers.
- The group is also in charge of making modifications and extensions to the network as required by new projects, in terms of project studies, equipment procurement, installation, supervision and commissioning.
- A section of the group is responsible for providing all cable installations for accelerators and experiments. This includes a great variety of HT and LV cables distributed over the entire CERN site and LHC ring. Optical fibres installation is also provided by this section

EN-EL organization

EN-EL _ LS2 (Marzia Bernardini _ Chamonix 2014, 25th Sept.)

Electrical group EN-EL has a huge and heavy plan around consolidation. It is a long term plan [2025], which will be implemented step by step during YETS, EYETS and Run 2. The plan has major activities also in the frame of LS2

- > Jura Station consolidation: ME9,
- SPS, Meyrin Machine network consolidation (HV, LV)
- Additional CERN station 400/66 kV near Bois Tollot [CERN 2 400kV _220MVA]
- ➢ Heavy maintenance plan (400 kV − 66 kV − 18 kV − LV − UPS...)
- > Automatism of control and regulation consolidation for Diesel LHC
- > Partial replacement of 18 kV protection relays and 48VDC systems on LHC surface
- > All users projects (Machine, Experiments, Infrastructure...)

→ Very tight and heavy schedule → **On the critical path** !!!

Run 2 and LS2 _ EN/EL constrains

Conclusions

- Electrical group has a huge and heavy plan around consolidation, mainly dedicated to injectors.
 - A long term plan, which will be implemented step by step during YETS, EYETS, Run 2 and LS2.
- EN-EL LS2 : very tight and heavy schedule, on the critical path
- EN-EL needs at least 1 year between user's request and commissioning, but **more** if modifications of infrastructure are necessary.
- EN-EL-CF outlines the need to receive the requests of copper cabling at least 1 year before LS2
- EN-EL to be contacted informed of project since the earliest phase !

