

Nuclear structure research at ISOLTRAP

17th of November 2008

Dennis Neidherr University of Mainz

Outline:

- Motivation for our measurements
- > Xe/Rn results
- ➤ Interpretation of the results
- ➤ Discovery of ²²⁹Rn

ISOLTRAP setup

Motivation

Empirical correlation between δV_{pn} values and growth rates of collectivity:

Interaction between the last proton(s) and neutron(s):

$$\begin{split} \delta V_{pn}^{ee}(Z,N) &= \frac{1}{4} \left\{ \left(B_{Z,N} - B_{Z,N-2} \right) - \left(B_{Z-2,N} - B_{Z-2,N-2} \right) \right\} \\ \delta V_{pn}^{eo}(Z,N) &= \frac{1}{2} \left\{ \left(B_{Z,N} - B_{Z,N-1} \right) - \left(B_{Z-2,N} - B_{Z-2,N-1} \right) \right\} \end{split}$$

In the vicinity of closed shells the p-n interaction is expected to be large if protons and neutrons are filling similar orbits.

Motivation Rn measurements

δV_{pn} values around A ~ 220:

Whereas the very large value for ²⁰⁸Pb is well understood, the sharp peak for Ra is still under investigation

N-rich Xe data

Masses of ¹³⁶⁻¹⁴⁶Xe:

- For ¹⁴³⁻¹⁴⁶Xe only extrapolations were known so far
- 147Xe would have also been possible, but we had no time to try it; 148Xe was never observed at any experiment
- We obtained also some resonances of ¹³⁸Xe, without influence of the expected contamination ¹³⁸Ba
- The uncertainty of our measurements is in the order of 2-20 keV

N-rich Xe data

2-neutron seperation energies of ¹³⁶⁻¹⁴⁶Xe:

N-rich Rn data

Masses of ²²³⁻²²⁹Rn:

6 masses were measured directly for the first time.

All these mass values were only extrapolated up to now.

Our uncertainties are always below 20 keV.

²²⁰Rn was used as a cross-check.

Neidherr et al, submitted to PRL

Interpretation of $\delta V_{pn}(Ra)$ data

For the Ra isotopes with an odd number of neutrons a very sharp peak at N=135 is visible.

This could be a hint for octopole deformation or a sub-shell clusure around N=134.

Here, the δV_{pn} values for neighboring elements have similar behavior, but they are systematically shifted to the right for each successive Z.

A similar behavior is only known in the rear-earth region where it appears near mid-shell.

The question is, if this resonance is really ²²⁹Rn (which was never seen before at any measurement):

We have several proofs that it is indeed ²²⁹Rn:

- i. The resonance was quite clean, so no contaminations were visible (which would lead to a decrease in the TOF effect)
- ii. All possible molecular contaminations with up to three different species in the range of +/- 2 Hz can be excluded.

²²⁹Rn (2)

iii. The yield is exactly behaving like expected. We saw roughly one order of magnitude less ²²⁹Rn than ²²⁸Rn.

The black circles show the yield in our trap, whereas the red rectangles show the yield at the ISOLDE tape station

New arc-discharge ion source increased the ionization efficiency for nobel gases by a factor of 5 to 20.

Talk by L. Penescu, Wednesday 11:50 am

²²⁹Rn (3)

iv. Also the half-life of ²²⁹Rn was measured at the ISOLDE tape station. And it fits very well with the theoretical predictions.

$$T_{1/2}$$
 (228Rn) = 65 s

$$T_{1/2}$$
 (229Rn) < 65 s

²²⁹Rn (3)

iv. Also the half-life of ²²⁹Rn was measured at the ISOLDE tape station. And it fits very well with the theoretical predictions.

Result from the fit: 12 s (+1.2 s, -1.3 s)

Outlook:

AME2003 data

DFT calculations

Next steps:

•158,160Sm:

A RILIS ionization scheme will be maybe tested this winter

• 154,156Nd:

an ionization scheme has already been tested

• 116,118,120Pd:

Determination of Cd- δV_{pn} values, too low yield, so also further target development necessary

Talk by V. Fedosseev, Tuesday 09:00 am

Thanks to:

- ISOLTRAP collaboration:
 - G. Audi, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, MAINZ
 - S. George, F. Herfurth, A. Herlert, A. Kellerbauer,
 - M. Kowalska, D. Lunney, S. Naimi, M. Rosenbusch,
 - S. Schwarz, L. Schweikhard
- And to:

R.B. Cakirli, R. Casten, E. Minaya-Ramirez, E. Noah, L. Penescu, T. Stora

• Funding:

Thanks a lot for your attention!