

HIE-ISOLDE

CERN-ISOLDE towards the future!

Mats Lindroos

Acknowledgements to all in the HIE-ISOLDE family

ISOL method of radioactive ion beam production

HIE-ISOLDE upgrades

P. Butler

P. Butler

HIE-ISOLDE: Next step with three objectives

- REX energy upgrade and increase of current capacity (Matteo Pasini)
 - Energy upgrade in 3 stages: 5.5 MeV and 10 MeV/u and lower energy capacity
- ✓ ISOLDE proton driver beam intensity upgrade strongly linked to PS Booster improvements including linac4 (Richard Catherall)
 - Faster cycling of the booster
 - New target stations for ISOLDE
 - New targets
 - New target handling system
- ✓ ISOLDE radioactive ion beam quality more than half already financed through the ISOLDE collaboration
 - Smaller longitudinal and transverse emittance
 - Done RFQ cooler operational
 - RILIS upgrade and LARIS construction
 - Done
 - Charge breeder upgrade
 - Better mass resolution
 - Continue target and ion source developments

Yields from HIE-LINAC

The proposed HIE-LINAC

LINAC energy variability

101.28 MHz Nb sputtered QW cavities

Low B

High β

Table 1: Cavity design parameters

Cavity	Low β	$high\beta$
No. of Cells	2	2
f (MHz)	101.28	101.28
β_0 (%)	6.3	10.3
Design gradient Eacc(MV/m)	6	6
Active length (mm)	195	300
Inner conductor diameter (mm)	50	90
Mechanical length (mm)	215	320
Gap length (mm)	50	85
Beam aperture diameter (mm)	20	20
$U/E_{acc}^2 \text{ (mJ/(MV/m)}^2$	73	207
$E_{\rm pk}/E_{\rm acc}$	5.4	5.6
$H_{\rm pk}/E_{\rm acc}$ (Oe/MV/m)	80	100.7
$R_{\rm sh}/Q\left(\Omega\right)$	564	548
$\Gamma = R_S \cdot Q_0 (\Omega)$	23	30.6
Q_0 for 6MV/m at 7W	$3.2 \cdot 10^{8}$	$5 \cdot 10^{8}$
TTF max	0.85	0.9
No. of cavities	12	20

Nb sputtering cavity development

- High β cavity prototype in fabrication
- Sputtering chamber design complete and in fabrication
- Chemical treatment facility refurbished and ready for tests with dummy cavity
- Clean room refurbished (there was a problem with floor tiles)
- Tools for handling and manufacturing in fabrication

Option 2

Welding test: 1000 mm distance e-beam

Roughness test performed after SUBU chemical polishing, 20 μ Achieved Ra \leq 0.8 μ m, target value

Manufacturing of beam ports: flat test

Bias electrode by water jet cutting

REX space charge limits - REX trap and chargebreeder

- The low energy stage at REX can today not handle the full intensity of some ISOLDE beams:
 - A new EBIS with higher fields and higher electron currents
 - A RFQ cooler for operation in continuous injection mode (ACCU mode) with the EBIS
 - Proposal submitted to the DOE in collaboration with MSU, TRIUMF, LLNL, MPI-K and ORNL

DOE proposal - Comparison EBIS/ECR/1+

		Proposed high- intensity EBIS/T breeder	Next-generation ECR breeder	1+ scheme with stripping	Gain EBIS/T vs ECR	Gain EBIS/T vs 1+
Efficiency for	ε (A<40)	> 60 %	< 20 %	<40%	>3	>1.5
single charge- state re- acceleration	ε (A=100)	> 50 %	< 20 %	<10%	>2.5	>5
	ε (A=200)	> 40 %	< 20 %	<5%	>2	>8
Chance of reaching breeding performance		Present performance 25-50% of values	Present performance 20-40% of values	NA		
Breeding (trapping) time		<20 ms	>100 ms	NA	>5	NA
Beam rate limit		>10 ¹¹ /s	>>10''/s	no limit		
Chance of reaching beam rate capability		RHIC test EBIS: >10 ⁹ ions/pulse	No risk	No risk		
Beam purity - stable beam current intensities		рА	>> μA	NA	>>1000	NA

	Proposed High-Intensity EBIT	MSU EBIT	TITAN EBIT	BNL test EBIS	REX-EBIS
Electron beam energy (keV)	< 60	< 30	< 60	<30	< 6
Electron beam current (A)	< 10	< 5	<5	<20	< 0.5
Central current density (A/cm²)	<10 ⁵	<10 ⁴	<10 ⁴	<600	<200
Magnet design	Helmholtz Coil + Solenoid	Helmholtz Coil + Solenoid	Helmholtz Coil	Solenoid	Solenoid
Maximum magnetic field (T)	9	6	6	5	2
Trap length (m)	1 m	0.5 m	0.1 m	0.7 m	0.8 m

O. Kester et al.

Higher driver beam intensities

- Cost for the faster cycling of the booster included in this proposal
 - Linac 4 will have major impact on the ISOLDE "targetry" and the project includes necessary modifications for linac 4 (but not the cost of linac 4!)
- Target handling, targets, waste handling and general safety in target area
 - Major improvement of working conditions for radiation workers compared to present situation and fully in line with European legislation

Manipulator concept design

- 6-DOF Manipulator mounted on ceiling monorails
- Equipped with tool changer for mounting different tools
- Recoverable by decoupling (remotely) rail gear drive
- High lifting capacity (FFE)
- Target & electrode accurate / sensitive operations
- Options:
 - Teleoperation with force reflection into Master
 - ...

1.5 - The 3D Laser Scan

Reference Points

Cloud of point in the CERN coordinate system

J. Sarret, L. Bruno

Beam quality

- Beam manipulation with traps and ionization with lasers permits tailoring of RI beams for Users
- Essential to strengthen target R&D to keep ISOLDE as a world leading ISOL lab.
- Major contribution received from UK and Sweden for RILIS and RFQ cooler (2655 kCHF)

RFQ cooler "ISCOOL" EPSCR grant (Manchester, Birmingham)

Continuous mode

d:YAG lasers installed at RILIS

Diode Pumped Solid State Nd: YAG Lasers as replacement of Copper Vapor Lasers:

SSL 8 ns @ 10 kHz

Green Beams 45 W @ 511 nm Green Beams 80 - 100 W @ 532 nm

Yellow Beams 35 W @ 578 nm UV Beam 18 W @ 355 nm

IR Beam 35 W @ 1064 nm

I on beam produced with the SSL in 2008:

Ga, Tl, Be, Nd, Cu, Mg, Pb

Improvement of Ga ionization efficiency by SSL:

- Two dye lasers were applied at 1st step of excitation x 2
- More power could be delivered to HRS target at the 2nd step of excitation
- ***Better power stability**

HIE-ISOLDE external contribution: Where are we?

- External grant from Belgium
- Second grant from Belgium approved for both physics programme and SC linac construction for HIE-ISOLDE
- Proposal submitted in the UK for HIE-linac
- Approved WP in EUCARD for R&D on thin film techniques
- RFQ cooler WP and RILIS WP financed and (almost) completed
- Proposal being prepared in the US to DOE for joint development of new high-intensity EBIS
- Discussions with CERN Mgt on CERN contribution.

Total all parts of project

		Swiss Francs			
1		Still required		Received	
			Material	Staff	Material
		FTE	kCHF	FTE	kCHF
1a *	LINAC prototyping and cryo design	0.0	425	5.5	
1b *	LINAC 3.0 - 5.5 MeV/u	25.5			4,472
1c	Linac 5.5 - 10 MeV/u	19.0	3,350		
1d	LINAC lower energies	9.5	1,325		
1e *	Beam lines for experimental area	1.0	0		500
2	REX trap and charge breeder	12.1	2,238		
3 *	TS consolidation		2,000		
	REX UPGRADE	67.1	11,754	5.5	4,972
<u>4</u> 5	Targets & Front-ends	25.8			60
5	PSB 900 ms	9.0	2,000		
	PROTON DRIVER BEAM	34.8	10,040	0.0	60
6 *	RFQ cooler	0.0	0		500
7 *	RILIS upgrade	0.0	0		2,400
8	High-charge state beams	1.1	800		
9	New HRS	0.8	1,100		
	BEAM QUALITY	1.9	1,900	0.0	2,900
10 *	Radiation protection consolidation	1.0	750		
11	Vacuum consolidation	8.5	2,408		
	CONSOLIDATION			0.0	0
	TOTAL	113.3	26,852	5.5	7,932
	Total Material	34,784			
	Total Personnel	10,000			
	PHASE I	27.5	5,591	5.5	7,932
	Total Material Phase I	13,523			
	Total Personnel Phase I		2,7	78	

Next steps

- The HIE-ISOLDE project
 - Presentation for Research Board in spring
 - Organization, responsibilities and structure fixed
- New grant proposals and in-kind contributions
 - HIE-linac
 - New EBIS construction, commissioning and installation
 - New High Resolution Mass separator
 - Study and engineering support for intensity upgrade

Conclusions

- HIE-ISOLDE is the future for Radioactive beam physics at CERN
 - Participative project
 - Well defined sub-projects with scientific and R&D return for labs and research foundation in charge
- Radioactive beam physics is just in the beginning...
 - Future facilities such as EURISOL offers exciting research opportunities and interesting technical challenges