Update from the LARIS lab

Marica Sjödin

19.2 19.4 19.6 19.8 20.0 20.2 20.4 Time of flight / μs

Auto-ionizing

state

- Introduction

Primary objectives:

- Investigate new ionization schemes (free from ISOLDE scheduling)
- Improve upon current schemes that rely on non-resonant ionization
 - search for auto-ionizing states
- Prepare for RILIS transition Solid State Laser system
 - different wavelength range (532 nm and 355 nm pumped dye lasers)

Secondary objectives:

- Investigate RILIS selectivity improvements
 - HFS measurements (isomer selectivity)
 - Hot cavity optimization / material testing

Tertiary objectives:

 Questions related to fundamental atomic spectroscopy, e.g. accurate determination of atomic ionization potentials.

CERN/KTH collaboration

Funding: Knut and Alice Wallenberg Foundation

- Immediate tasks

Measure relative efficiecies of ionization schemes

Systematic study of auto-ionising states

New ionisation schemes for currently unavailable elements

Replace schemes that require CVL pumping @ 511 nm

LARIS is an offline development lab for RILIS ISOLDE

Separate laser system

Separate atomic scource

(only stable isotopes)

- overview

- Lasers

Continuum PowerLite 7010 + OPO Mirage + Continuum UVT

Tuning range: 720 - 920 nm (fund.), 360 - 460 nm (2ω)

80 mJ @750nm

10 mJ @ 425nm

- Lasers

Spectra Physics Quanta-Ray PRO 230-10 + MOPO HF + FDO-970

Tuning range: 450 - 690 nm (signal), 735 - 1680 nm (idler), 220 - 440 (2ω)

70 mJ @500nm

7.5 mJ @250nm

- Lasers

Spectra Physics Quanta-Ray PRO 230-10 + MOPO HF + FDO-970

Tuning range: 450 - 690 nm (signal), 735 - 1680 nm (idler),

 $220 - 345, 365 - 440 (2\omega)$

"Easily" tuneable over a very wide λ -region (with some gaps)

Handy when probing for autoionising states

Complicated (and expensive!) to set up

Need good tables

- Lasers

Quantel Brilliant ("Banana laser") Nd:YAG with 2ω and 3ω units Lumonics HD-500 Dye laser

Dye tuning ranges: 390 - 850 nm (fund.), $>200 \text{ nm}(2\omega)$

Quantel YAG Pump laser

20 Hz

Pulse energy:

350 mJ (1064 nm) 160 mJ (532 nm) 60 mJ (355 nm)

Pulse duration @1064 nm: 4.4 ns

Two complementary units:

Laser ablation source With Time Of Flight MS

Thermal atomic beam unit TOF MS will be added

- Time of flight mass spectrometer

Ablation chamber and gas transport of atoms into interaction region:

Ablation chamber

To acquire higher resolution laser spectra for specific isotopes

Measure isotope shifts for stable isotopes

Measure HFS for different atomic transitions in various ionization schemes (Feasibility study for *isomer separation*)

- Time of flight mass spectrometer

5 cm, \emptyset 6 mm

Ablation unit

- Time of flight mass spectrometer

- Data Acquisition system

- First test of RILIS ISOLDE relevant element - Mn

Why Mn?

A new ionisation scheme was urgently needed

When the current Mn scheme was developed at RILIS the yield was found to be better when a weak transition was used in the second step – Suspect an accidental resonance

Interesting – what is that accidental resonance?

What happens when we replace CVL with YAG?

Full test of our entire system

One colour signal $\sqrt{}$ Two or three colour signal \times

We can trust our method for overlapping the beams

But...

We recently found that we were not using optimal delays between gas pulse, ablation laser and ionisation lasers

And we found that our wavemeter can not be trusted in the UV region

So we will try again

- Thermal atomic beam unit

Plan of the first thermal atomic beam unit in LARIS built by Fabian Österdahl

Ceramic oven
Watercooled flange
Channeltron detector close to the interaction region

We are now in the process of making some modifications to begin using it for spectroscopy

- Thermal atomic beam unit

Ceramic oven replaced with Tantalum oven

Same flange – Replace insulator and make full use of water cooling

20 cm extension to increase the distance to channeltron

- Testing Reflectivity of Molybdenum mirror at higher temperatures

Heated mirror up to 1000 C

No change in reflectivity has been detected

- SUMMARY

- Working Lasers
- Timing system
- Working Laser ablation TOF MS
- Laser Ions Ti, Cu, Mn, Ca 1 and/or 2 coulour signals
- Data Aquisition: ω, Oscilloscope can function as 8 Boxcar modules, laser power measurement.

FUTURE plans

- Reassemble oven unit
- Measurements from thermal ABU to complement laser ablation scource
- TOF for oven ABU
- Continue with Mn and other elements...

- PEOPLE

FEDOSSEEV, Valentine (CERN)
LINDROOS, Mats (CERN)
LOSITO, Roberto (CERN)
MARSH, Bruce (CERN)

POHJALAINEN, Ilkka (Helsinki University)

SASSENBERG, Ulf (Stockholm University)

BERG, Lars-Erik (Royal Institute of Technology)
LAUNILA, Olli (Royal Institute of Technology)
PAUCHARD, Thomas (Royal Institute of Technology)
RAFIEE, Mohammad (Royal Institute of Technology)
SJÖDIN, Marica (Royal Institute of Technology)
TRANSTRÖMER, Göran (Royal Institute of Technology)
VANNESJÖ, Johanna (Royal Institute of Technology)
ÖSTERDAHL, Fabian (Royal Institute of Technology)

Funding: Knut and Alice Wallenberg Foundation