Lawrence Livermore National Laboratory

Narrowing of the *sd-pf* shell gap in radioactive ²⁹Na

Aaron M. Hurst

ISOLDE Workshop and Users Meeting 2008: 17th - 19th November 2008 Hurst10@Ilnl.gov

Overview

Motivation:

• Why measure ²⁹Na [$T_{1/2}$ = 44.9 ms]?

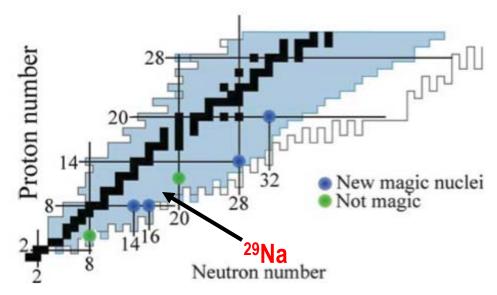
Experimental highlights:

- TRIUMF/ISAC-II + TIGRESS/BAMBINO
- Coulomb excitation of ²⁹Na @ 70 MeV on ¹¹⁰Pd

Results and interpretation:

- coincident γ-ray spectroscopy of ²⁹Na
- $M(E2; 3/2^+ \to 5/2^+)$ value for ²⁹Na
- structural implications for ²⁹Na

Summary and outlook



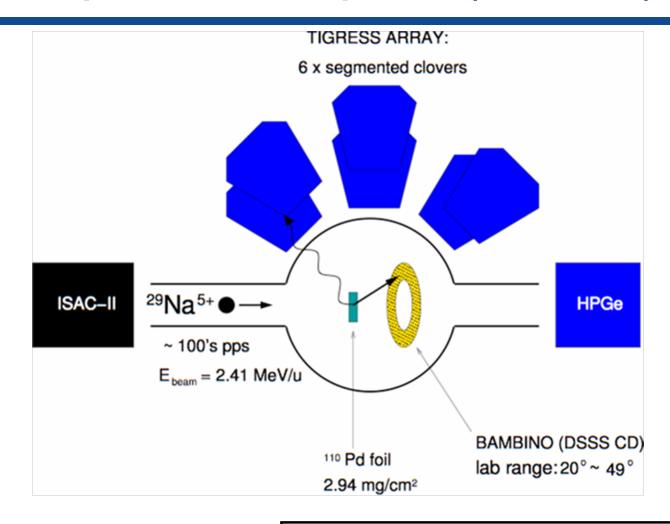
Physical problem: ²⁹Na

Motivation:

- Test predictive capability of modern nuclear theory
- ²⁹Na is at the transitional region for breakdown of *traditional* shell model
- Magic number N = 20 vanishes for exotic nuclei (extreme N/Z ratio)

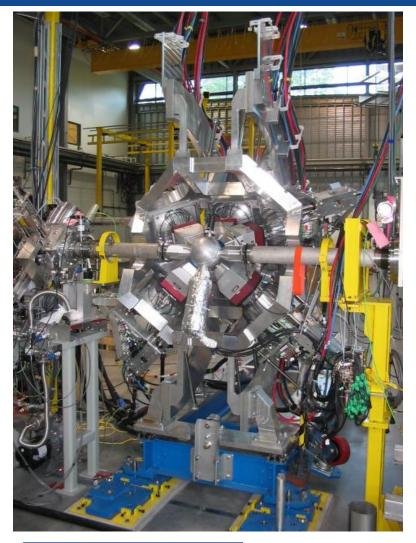
Goal:

- Quantify the configuration mixing between the sd and pf major shells in ²⁹Na
- Measure transition M(E2) to first excited state in ²⁹Na; sensitive to strength of shell gap


Methodology:

- Sub-barrier Coulomb excitation (Coulex)
- Post accelerated radioactive beam of neutron-rich ²⁹Na @ TRIUMF/ISAC-II

Experimental setup: 110Pd(29Na,29Na*) @ 70 MeV



Measure particle-γ coincidences

TIGRESS γ -ray spectrometer

- 6 x 32-fold clover detectors
- Each clover mounted with segmented suppression scintillators (BGO and Csl)
- Close geometry around target chamber
- \cdot ~36 % of 4π

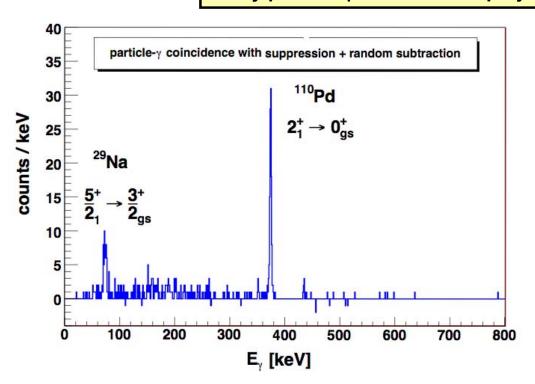
BAMBINO auxiliary particle detector

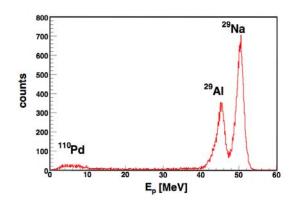
Provided by LLNL

 Segmented DSSSD for heavy-ion detection: scattered beam and recoiling target particles

• Front face: 32 x sector strips

• Back face: 24 x annular rings



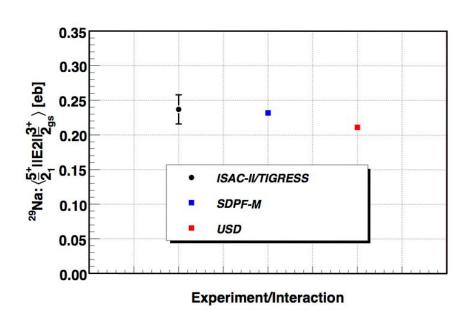


Coulomb excitation of ²⁹Na + ¹¹⁰Pd @ 70 MeV

Any particle- γ coincidence: projectile + recoil

BAMBINO: enables ²⁹Na/²⁹Al isobar separation

Beam on target ~ 70 h


Intensity ~ 600 pps

$$\sigma_{CE}(^{29}\text{Na}) = \frac{N_{\gamma}(^{29}\text{Na})}{N_{\gamma}(^{110}\text{Pd})} \cdot \frac{\varepsilon_{\gamma}(^{110}\text{Pd})}{\varepsilon_{\gamma}(^{29}\text{Na})} \cdot \frac{W_{\gamma}(^{110}\text{Pd})}{W_{\gamma}(^{29}\text{Na})} \cdot \sigma_{CE}(^{110}\text{Pd})$$

Results: extracted $\langle 5/2^+_1 || E2 || 3/2^+_{gs} \rangle$ for ²⁹Na

EXPT [eb]	SDPF-M [eb]	USD [eb]
0.237(21)	0.232	0.211

SDPF-M: sd, $p_{3/2}f_{7/2}$ shell-model spaces + cross-shell mixing

USD: constrained sd shell-model space (universal sd)

Calculations: Y. Utsuno et al., PRC 70, 044307 (2004)

Coulomb-excitation measurement:

- Consistent with SDPF-M calculation
- Aligned with previous work, e.g. $I_{gs} = 3/2^{+}_{gs}$, spectroscopic Q, consistent with SDPF-M prediction
- Neutron excitations across *sd-pf* shell gap: $30 \sim 40\%$ 2p-2h admixture in $\psi(5/2^+_4)$
- Consistent with narrow sd-pf neutron shell gap of ~ 3 MeV (c.f. ~ 6 MeV along line of β-stability)

Strong evidence for *sd-pf* shell mixing in 3/2⁺_{gs} and 5/2⁺₁ in ²⁹Na

Phenomenological analysis:

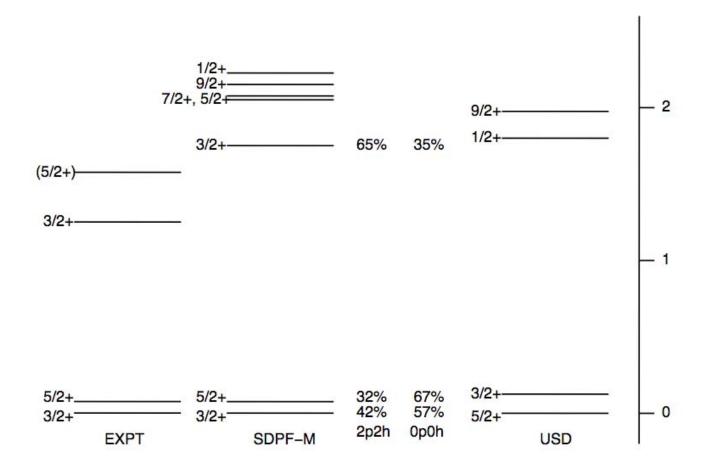
- B(E2) ≈ 18 W.u., large overlap of ground and first excited states: enhanced transition probability
- Rotational model: intrinsic quadrupole moment derived according to:
 - (1) transition matrix element: $Q_t = 0.524(46)$ eb c.f. SDPF-M calculation: $Q_t = 0.513$ eb
 - (2) static quadrupole moment: $Q_0 = 0.430(15)$ eb c.f. SDPF-M calculation: $Q_0 = 0.455$ eb___

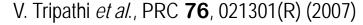
Summary and outlook

- We have performed a successful Coulomb excitation measurement with a very low-flux radioactive-ion beam with only a few hundred pps beyond the expectations of the community.
- Opens the door to the ever-more exotic nuclei with a few tens of pps when the next generation of γ -ray detector arrays (AGATA and GRETA) come online.
- First-ever measurement of transition probability between ground and first-excited state in ²⁹Na.
- Most neutron-rich Na isotope where this measurement has been made using the ISOL technique.
- ²⁹Na is the most striking example where such large degrees of mixing between normal (*sd*) and intruder (*pf*) configurations have been observed at the boundary to the island of inversion.
- TRIUMF/ISAC-II experiments are in the production phase providing new and exciting data that challenge current shell-model theories.
- ²⁹Na results have been submitted for publication.

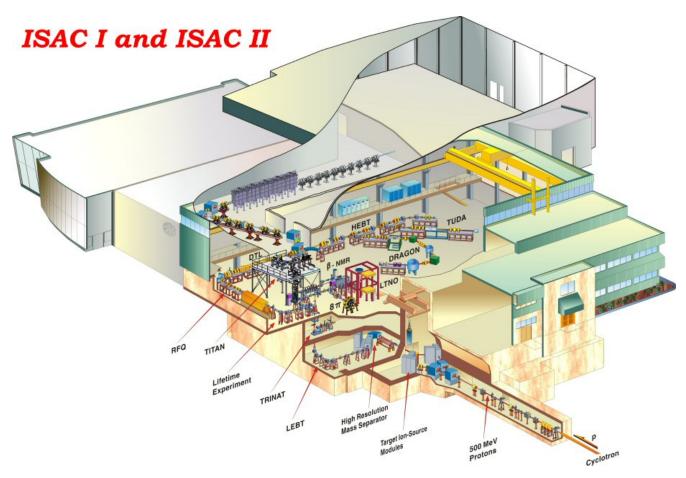
Meaningful test of theoretical predications requires measurements in a region, not just a solitary nucleus

• Extend our measurements to ³⁰Na and ³¹Mg after 2010 - working with TIGRESS collaboration at TRIUMF with accompanying theoretical support from LLNL.


TIGRESS Collaboration


- **A. M. Hurst**^a, C. Y. Wu^a, J. A. Becker^a, M. A. Stoyer^a, C. J. Pearson^b, G. Hackman^b, M. A. Schumaker^c, C. E. Svensson^c, R. A. E. Austin^d, G. C. Ball^b, D. Bandyopadhyay^b, C. J. Barton^e, A. J. Boston^f, H. C. Boston^f, R. Churchman^b, D. Cline^g, S. J. Colosimo^d, D. S. Cross^h, G. Demand^c, M. Djongolov^b, T. E. Drakeⁱ, P. E. Garrett^c, C. Gray-Jones^f, K. L. Green^c, A. N. Grint^f, A. B. Hayes^g, K. G. Leach^c, W. D. Kulp^j, G. Lee^b, S. Lloyd^b, R. Maharaj^b, J-P. Martin^k, B. A. Millar^c, S. Mythili^l, L. Nelson^f, P. J. Nolan^f, D. C. Oxley^f, E. Padilla-Rodal^b, A. A. Phillips^c, M. Porter-Peden^m, S. V. Rigby^f, F. Sarazin^m, C. S. Sumithrarachchi^c, S. Triambak^c, P. M. Walkerⁿ, S. J. Williams^b, J. Wong^c, J. L. Wood^j
- (a) Lawrence Livermore National Laboratory, Livermore, California, USA
- (b) TRIUMF, Vancouver BC, Canada
- (c) University of Guelph, Guelph ON, Canada
- (d) Saint Mary's University, Halifax NS, Canada
- (e) University of York, York, UK
- (f) University of Liverpool, Liverpool, UK
- (g) University of Rochester, Rochester, New York, USA
- (h) Simon Fraser University, Burnaby BC, Canada
- (i) University of Toronto, Toronto ON, Canada
- (j) Georgia Institute of Technology, Atlanta, Georgia, USA
- (k) University of Montreal, Montreal QC, Canada
- (I) University of British Columbia, Vancouver BC, Canada
- (m) Colorado School of Mines, Golden, Colorado, USA
- (n) University of Surrey, Surrey, UK

²⁹Na shell-model calculations

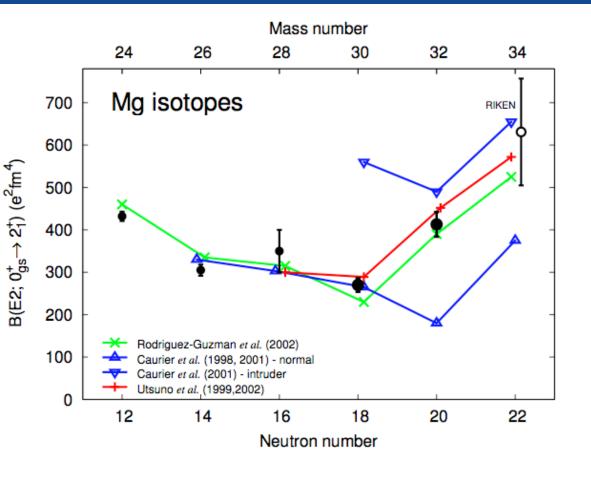


ISOL @ TRIUMF

- 500 MeV, 70 μA proton beam
- + natTa production target
- Produce ²⁹Na atoms
- natRe surface-ion source
- Produce ²⁹Na⁺ ions
- Stripper foil
- Produce ²⁹Na⁵⁺ ions
- ISAC-II: A/q = 5.8

What we know about Na isotopes with $N \approx 20$

- □ First observation of ²⁷⁻³¹Na isotopes
 - R. Klapisch et al., PRL 23, 652 (1969)
- Anomalously large binding energies revealed in ^{31,32}Na
 - C. Thibault *et al.*, PRC **12**, 644 (1975)
- Ground-state magnetic moments and spins of ²⁶⁻³⁰Na isotopes
 - G. Huber et al., PRC 18, 2342 (1978)
- Ground-state quadrupole moments of ²⁶⁻²⁹Na
 - M. Kieim et al., EPJA 8, 31 (2000)
- Shell model calculations: B(E2) predictions for ²⁹Na
 - Y. Utsuno et al., PRC 70, 044307 (2004)


SDPF-M	USD
135 e ² fm ⁴	111 e ² fm ⁴

- β-decay spectroscopy of ²⁹Na: detailed level scheme
 - + interpretation of states
 - V. Tripathi *et al.*, PRL **94**, 162501 (2005)

What is the signature of shell model breakdown?

- *B(E2)* values are a good indication e.g. systematics for even-even Mg [*Z* = 12] isotopes
- Experimental *B(E2)* values reverses trend predicted by traditional shell model (increase rather than decrease)
- Traditional shell model breakdown at N = 20 and $A \approx 30$
- Inversion of sd pf shell-filling sequence due to change in the effective NN interaction for nuclei with extreme isospin

Develop systematics for Na [Z = 11] isotopes

Experimental method

We want to extract a value for $\sigma_{CE}(^{29}Na)$ from the experimental data

Experimental observable:
$$N_{\gamma} \propto L \cdot \sigma_{CE}$$
 beam luminosity: $L = I_b \left(\frac{N_A}{A} \right)_t$

Absolute measurement of Coulex cross section:

$$N_{\gamma} = \varepsilon_{\gamma} \cdot W_{\gamma} \cdot \sigma_{\text{CE}} \cdot L \cdot \varepsilon_{\text{sys}}$$

DIFFICULT!

- Radioactive beam flux varies throughout experiment. Difficult to get an accurate handle on beam intensity
- Many Systematic uncertainties e.g. dead time of data acquisition, beam energy, target thickness, particle detection efficiency.....
- Need to account for all systematic uncertainties
- Cross section with very large error bar!

Coulomb-excitation cross section $\sigma_{CE}(^{29}Na)$

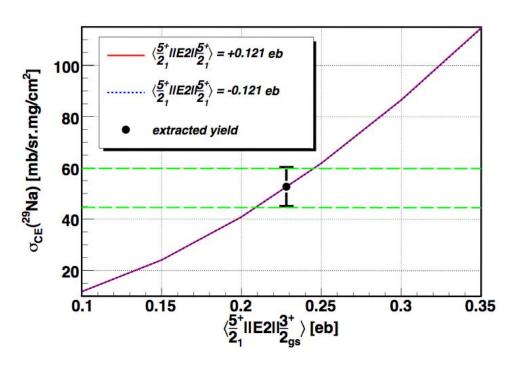
Remove as many sources of error as possible

PROJECTILE EXCITATION:

$$N_{\gamma}(^{29}\text{Na}) = \varepsilon_{\gamma}(^{29}\text{Na}) \cdot W_{\gamma}(^{29}\text{Na}) \cdot \sigma_{\text{CE}}(^{29}\text{Na}) \cdot L \cdot \varepsilon_{\text{sys}}$$

TARGET EXCITATION:

$$N_{\gamma}(^{110}\mathrm{Pd}) = \varepsilon_{\gamma}(^{110}\mathrm{Pd}) \cdot W_{\gamma}(^{110}\mathrm{Pd}) \cdot \sigma_{\mathrm{CE}}(^{110}\mathrm{Pd}) \cdot L \cdot \varepsilon_{\mathrm{sys}}$$

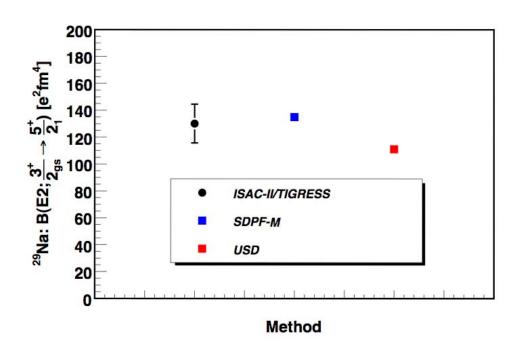

Take ratios of γ -yields \Rightarrow relative determination of Coulex cross section:

$$\sigma_{CE}(^{29}\text{Na}) = \frac{N_{\gamma}(^{29}\text{Na})}{N_{\gamma}(^{110}\text{Pd})} \cdot \frac{\varepsilon_{\gamma}(^{110}\text{Pd})}{\varepsilon_{\gamma}(^{29}\text{Na})} \cdot \frac{W_{\gamma}(^{110}\text{Pd})}{W_{\gamma}(^{29}\text{Na})} \cdot \sigma_{CE}(^{110}\text{Pd})$$

Simplified expression independent of L and ϵ_{sys}

Derivation of M(E2) from Coulomb-excitation yield

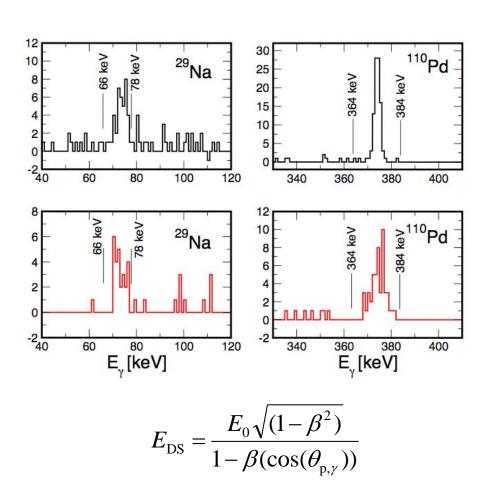
$\sigma_{\rm CE}(^{29}{\rm Na})$ [mb]	<i>M(E2)</i> [eb]
52.3(78)	0.237(21)

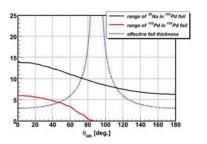

M(E2) deduced from graphical solution of measured and calculated (GOSIA) Coulomb excitation cross sections

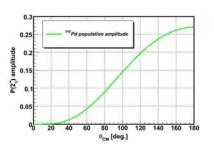
Results: $B(E2; 3/2^+ \rightarrow 5/2^+)$ for ²⁹Na

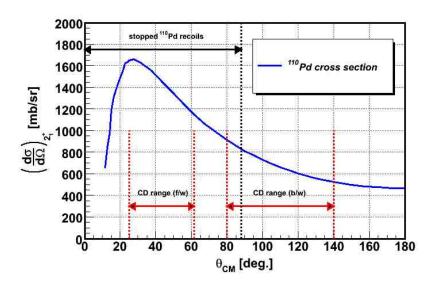
Expt [e ² fm ⁴]	SDPF-M [e ² fm ⁴]	USD [e ² fm ⁴]
140(25)	135	111

- Experimental result favours SDPF-M calculation (consistency at 1-σ level)
- Result is indicative of a strongly mixed configuration; with an intruder *pf* states comprising ~32 % of the wave function
- Result supports narrowing of *sd-pf* shell gap from ~6 MeV in stable nuclei to ~3.25 MeV in ²⁹Na


[Y. Utsuno et al., PRC 70, 044307 (2004)]


 Auxiliary-Field MCSM calculations by LLNL theory group in progress



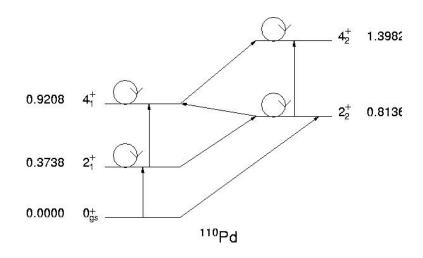


Back-up: γ-ray spectroscopy of ²⁹Na + ¹¹⁰Pd

Back-up: 110Pd yield correction

 110 Pd(29 Na, 29 Na*) + 110 Pd(29 AI, 29 AI*) \Rightarrow 110 Pd* excitation Need correction factor to N $_{\gamma}$ (110 Pd) $_{tot}$

$$N_{\gamma}(^{110}\text{Pd})_{\text{tot}} = N_{\gamma}(^{110}\text{Pd})_{\text{Na}} + N_{\gamma}(^{110}\text{Pd})_{\text{Al}}$$

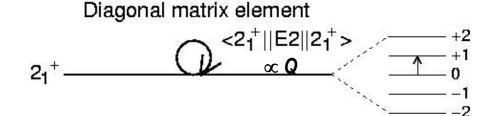

Get expression for $N_{\gamma}(^{110}Pd)_{AI}$ in terms of $N_{\gamma}(^{110}Pd)_{Na}$

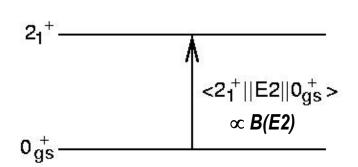
$$\frac{N_{\gamma}(^{110}\text{Pd})_{Al}}{N_{\gamma}(^{110}\text{Pd})_{Na}} = \frac{f(^{29}\text{Al}) \cdot \sigma_{CE}(^{110}\text{Pd})_{Al}}{f(^{29}\text{Na}) \cdot \sigma_{CE}(^{110}\text{Pd})_{Na}}$$

Back-up: GOSIA calculations

GOSIA: semi-classical code used to calculate integrated γ -ray yields i.e. Coulomb excitation cross sections

$$\mathbf{M}(^{110}\mathrm{Pd};E2) = \begin{pmatrix} 0 & 0.919(24) & -0.096(3) & 0 & 0 \\ 0.919(24) & -0.87(16) & -0.863(14) & 1.579(21) & -0.066(14) \\ -0.096(3) & -0.863(14) & 0.70(20) & 0.51(22) & 0.97(4) \\ 0 & 1.579(21) & 0.51(22) & -1.6(3) & -0.94(5) \\ 0 & -0.066(14) & 0.97(4) & -0.94(5) & -0.01(19) \end{pmatrix}$$

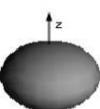

- 110Pd level scheme
- Significant couplings considered in calculation of $\sigma_{CE}(^{110}Pd)$
- Spherical electric quadrupole tensor corresponding to defined level scheme for ¹¹⁰Pd
- Irreducible representation of transitional and diagonal matrix elements
- •110Pd data: University of Rochester, NSRL-338 (1989) [unpublished]
- Calculate $\sigma_{CE}(^{110}Pd)$ directly



Back-up: Reduced matrix elements

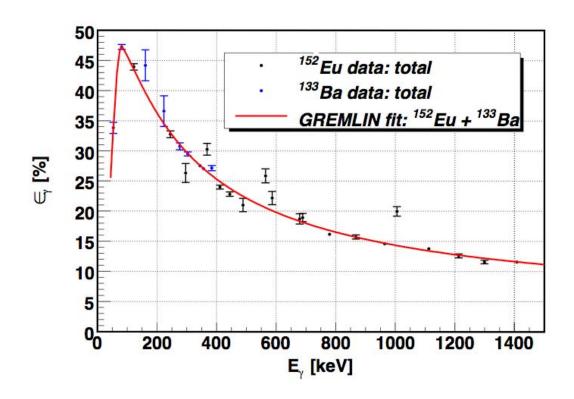
Transitional matrix element

0_{gs}+_____

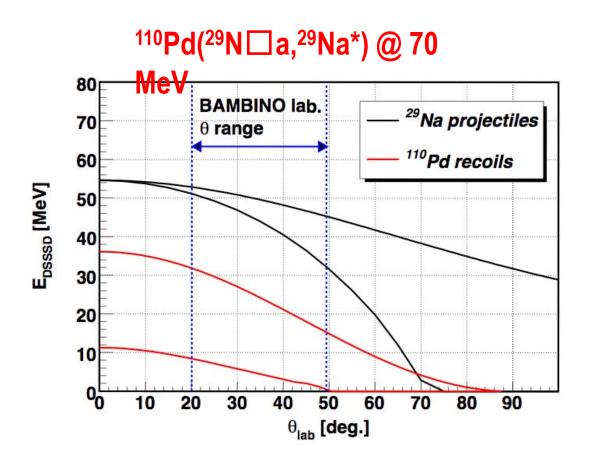

For even-even nuclei

=> if Coulex yield is consistent with:

1 negative $\langle 2_1^+ || E2 || 2_1^+ \rangle = \rangle$ prolate shape

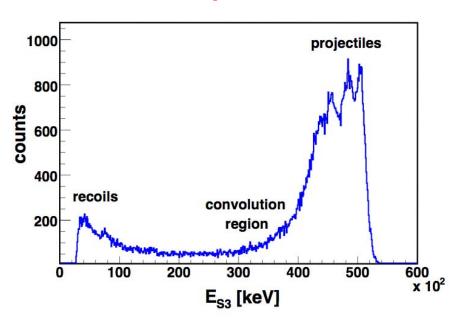

2 positive $\langle 2_1^+ || E2 || 2_1^+ \rangle$ => oblate shape

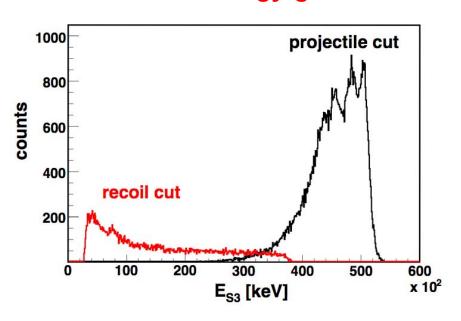
Back-up: Efficiency curve



Determine $\varepsilon_{\gamma}(^{29}\text{Na})$ and $\varepsilon_{\gamma}(^{110}\text{Pd})$ from efficiency curve; correction factors for yields $N_{\gamma}(^{29}\text{Na})$ and $N_{\gamma}(^{110}\text{Pd})$ determined from spectra

Calculated particle kinematics

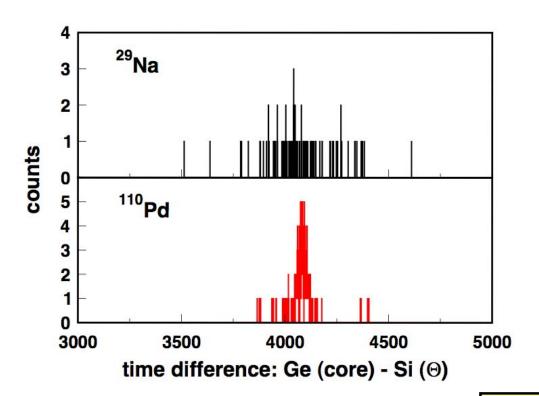

Projectile/recoil energy and angle enable particle ID [$E_p(\theta_{lab})$]



Particle identification in BAMBINO

All particles

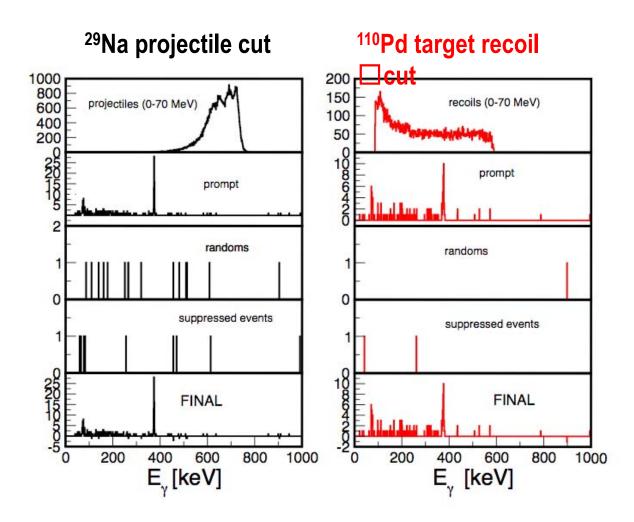
Particle-energy gated



2D energy and angle gating in BAMBINO enables PID

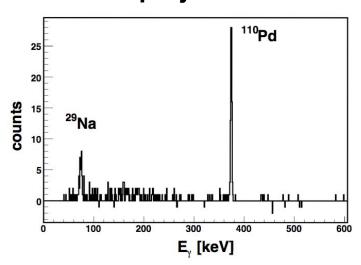
P- γ coincidence measurements: low energy issues?

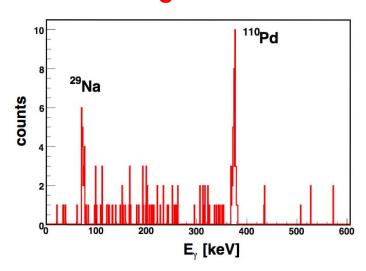
- Particle-γ coincidence time window
- Coincidence ε_{γ} for low-energy γ rays is an expt. issue
- Poorer timing at low energy: ²⁹Na (E_{γ} = 72 keV) c.f. ¹¹⁰Pd (E_{γ} = 374 keV) ⇒ broader spectrum!
- Collect ²⁹Na events with max ε_{v}
- Determine width of prompt (and random!) windows


- E_v(29Na) ~ 72 keV [cut: 66 78 keV]
- E_v(110Pd) ~ 374 keV [cut: 364 384 keV]

We can operate at E_{γ} = 72 keV !!!

γ -ray spectroscopy of ²⁹Na + ¹¹⁰Pd





Back-up: Kinematically-constrained events

²⁹Na projectile cut

¹¹⁰Pd target-recoil cut

Calculations assume M(E2) = 0.237 eb

Extracted yield [mb]	Calculated yield [mb]
155(30)	144

Extracted yield	Calculated yield
[mb]	[mb]
61(22)	65

Results are consistent!

