

The REX low-energy toolbox

Anna Gustafsson for the REX-team

ISOLDE Workshop and Users meeting November 2008

- Summary 2008
- MINIMONO beam injection
- Trap mass resolution
- In-trap decay
- N+ beam to Witch
- Outlook

REX campaign 2008

- (1) ¹⁰C from CO molecular beams Second beamline 2.9 MeV/u
- -> First C beam
- (2) 61Fe and 61,62Mn

MINIBALL Coulex 2.9 MeV/u

- -> Fe isotopes produced by in-trap decay of Mn
- (3) 70mCu

MINIBALL Coulex 2.9 MeV/u

- -> RILIS isomeric beam
- $(4)^{202,204}Rn$

MINIBALL Coulex energy 2.8 MeV/u

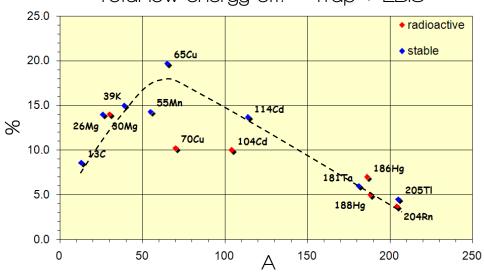
- -> Heaviest isotope so far
- (5) 100,102,104Cd

MINIBALL Coulex energy 2.9 MeV/u

(6) ^{180,182}Hg

MINIBALL Coulex energy 2.85 MeV/u

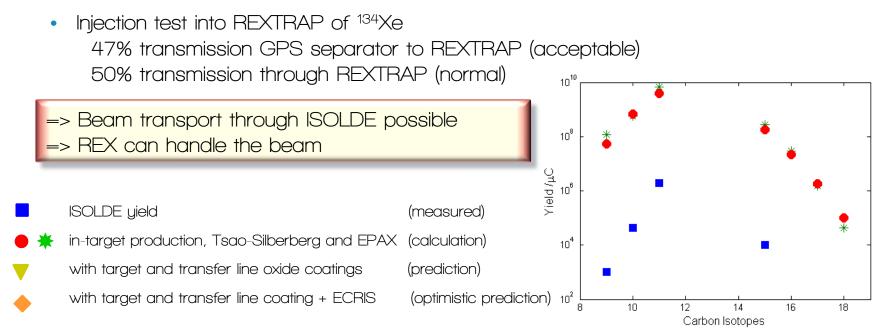
 $(7)^{30}Mg$


Transfer reactions at MINIBALL 1.8 MeV/u

-> long run: 1.5 weeks

4 new elements and 6 new radioactive isotopes post-accelerated

¹⁰C³⁺ (more later) ^{61,62}Mn^{15+,21+} ⁶¹Fe²¹⁺ (more later) ^{202,204}Rn⁴⁷⁺

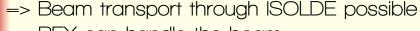

Total low energy eff. = Trap + EBIS

- °C unsuccessful -> no beam seen at Miniball
- Linac RF amplifiers working very well but transmission still troublesome

- ECRIS 1+ source
 - + cold surfaces (C, O, N beams)
 - large current -> space charge blowup
 - large emittance -> transport/injection problems
- Injection test into REXTRAP of ¹³⁴Xe
 47% transmission GPS separator to REXTRAP (acceptable)
 50% transmission through REXTRAP (normal)
- => Beam transport through ISOLDE possible
- => REX can handle the beam

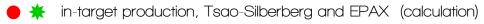
- ECRIS 1+ source
 - + cold surfaces (C, O, N beams)
 - large current -> space charge blowup
 - large emittance -> transport/injection problems

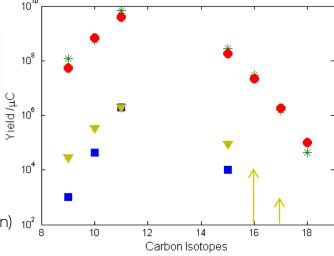
'Production of exotic, short lived carbon isotopes in ISOL-type facilities' H. Frånberg CERN-THESIS-2008-084


- ECRIS 1+ source
 - + cold surfaces (C, O, N beams)
 - large current -> space charge blowup
 - large emittance -> transport/injection problems

Injection test into REXTRAP of ¹³⁴Xe

47% transmission GPS separator to REXTRAP (acceptable)


(optimistic prediction)



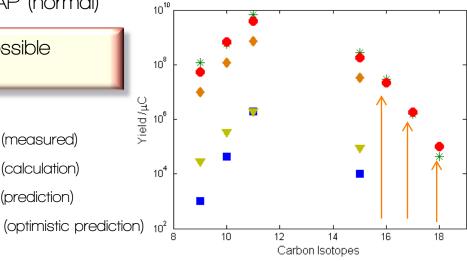
Gain by coating the target

container and the transfer

'Production of exotic, short lived carbon isotopes in ISOL-type facilities' H. Frånberg CERN-THESIS-2008-084

- ECRIS 1+ source
 - + cold surfaces (C, O, N beams)
 - large current -> space charge blowup
 - large emittance -> transport/injection problems

Injection test into REXTRAP of ¹³⁴Xe
 47% transmission GPS separator to REXTRAP (acceptable)
 50% transmission through REXTRAP (normal)


=> REX can handle the beam

lacktriangle in-target production, Tsao-Silberberg and EPAX (calculation)

with target and transfer line oxide coatings (prediction)

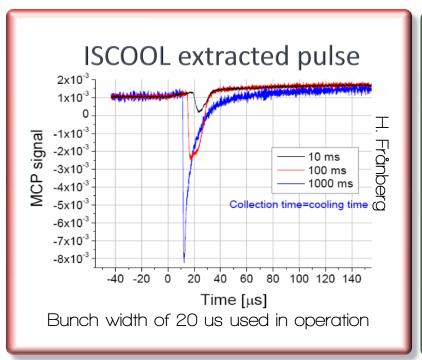
with target and transfer line coating + ECRIS

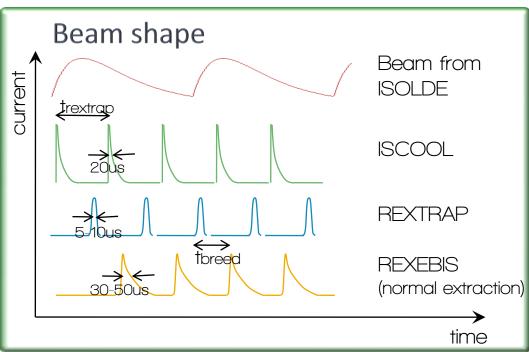
Additional change from a

FEBIAD ion source to an

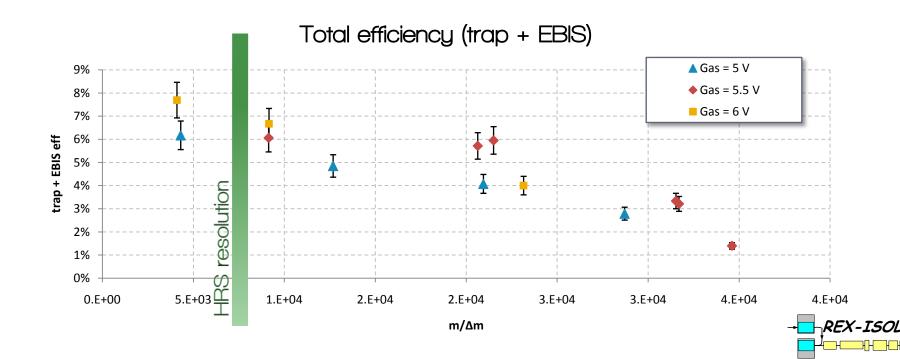
ECR ion source

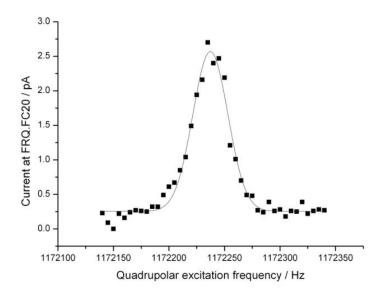
'Production of exotic, short lived carbon isotopes in ISOL-type facilities' H. Frånberg CERN-THESIS-2008-084


Mass resolving operation – Pulsed beam & injection


- Redone isotopic mass purification with REX-TRAP and taken through the LINAC to the experimental area
- Now with high efficiency by using pulsed injection

Mass resolving operation – Pulsed beam & injection


- Redone isotopic mass purification with REX-TRAP and taken through the LINAC to the experimental area
- Now with high efficiency by using pulsed injection

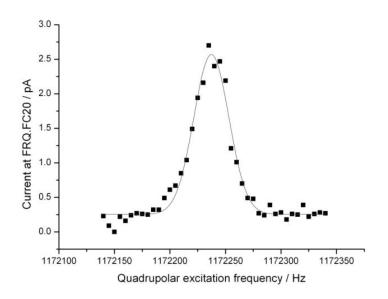

Mass resolving operation – Efficiency

With ISCOOL and pulsed injection the total efficiency for the low energy part for mass resolving operation is typically 5 %, compared to 0.5 % without pulsed setup and 10-15 % for standard operation

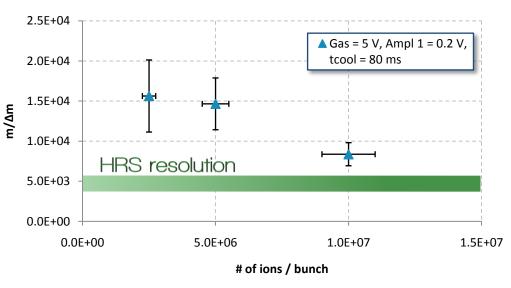
Mass resolving operation – Obtained resolution

```
39K
3.7e6 ions/bunch
Total cooling time = 110 ms
Total eff. = 3.3 %
m/dm = 3.2e4
good suppression
```


Measured after EBIS and separator magnet



Mass resolving operation – Obtained resolution

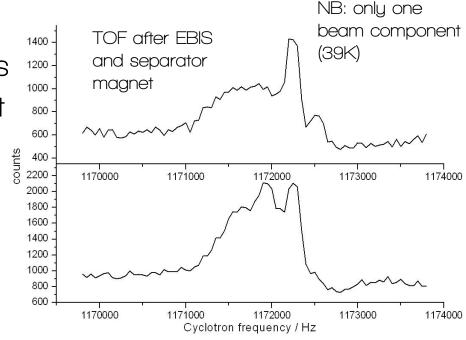

39K 3.7e6 ions/bunch Total cooling time = 110 ms Total eff. = 3.3 % m/dm = 3.2e4 good suppression

Mass resolving power dependent of number of ions in the trap

Mass resolving power vs space charge

Measured after EBIS and separator magnet

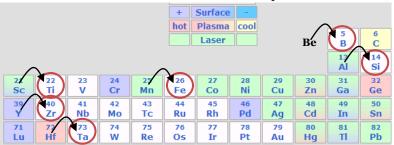
Mass separation - Limitations


- Throughput
 - Limited space-charge (10⁵-10⁶ ions/bunch) (stable contamination!)
- Cycle time
 - Limits the use of nuclides with halflives < 100ms

Mass separation - Limitations

- Throughput
 - Limited space-charge (10⁵-10⁶ ions/bunch) (stable contamination!)
- Cycle time
 - Limits the use of nuclides with halflives < 100ms
- Setup experience
 - Difficult to reproduce results
 - Processes in REXTRAP not yet fully understood

Tests with radioactive beam were performed, but due to uncertainties in isotope identification no conclusions could be drawn


In-trap decay

The idea

Let easily produced elements decay in REX low energy part prior to acceleration to provide post-accelerated beams of difficultly produced elements (previously used at ISOLTRAP)

Alternatives: decay in trap or in EBIS

ISOLDE examples (β - decay)

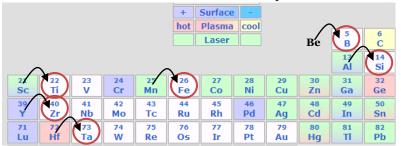
Elements not part of ISOLDE database

In-trap decay

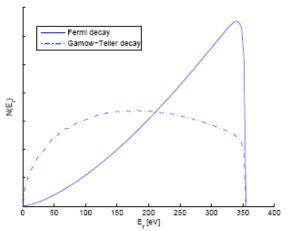
The idea

Let easily produced elements decay in REX low energy part prior to acceleration to provide post-accelerated beams of difficultly produced elements (previously used at ISOLTRAP)

Alternatives: decay in trap or in EBIS


Limitations

- Reasonable $t_{1/2}$ mother: 10 ms to 2 s
- β decay -> daughter 2+ charged
- β + decay -> daughter neutral
- Daughter recoil energy limited trapping potentials in trap and EBIS 100-200 V 300-400 V


Uncertain parameters

- Electron shake-off: n+ charged daughter ions
- Ion recombination: n+ to 1+ (in REXTRAP)
- => tests important before scheduling

ISOLDE examples (β - decay)

Elements not part of ISOLDE database

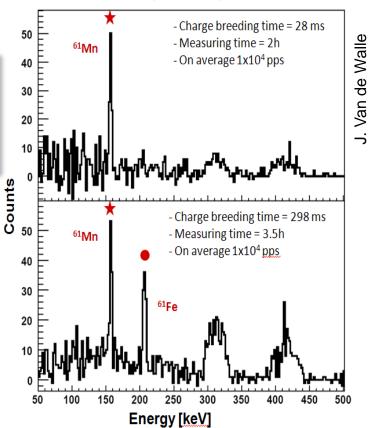
F. Ohlsson's Diploma thesis Chalmers university of Technology 2007

Example of a recoil energy distribution function.

$$E_r^{\text{max}} = \frac{c^2}{2M_2} \left[\frac{1}{0} - m_0^2 \right]^{-1} \text{ Max recoil energy (β-, β+)}$$

$$E_0 = \frac{\Delta + \frac{m_0^2}{2M}}{1 + \frac{\Delta}{M}} \quad M = \frac{1}{2}(M_1 + M_2) \quad m_0 \text{ electron rest mass} \\ M_1 \text{ mass mother ion} \\ M_2 \text{ mass daughter ion}$$

In-trap decay results (15468)


Method tested for the first time at REX-ISOLDE by utilizing an intense beam of ^{61}Mn ($T_{1/2}$ =675 ms; 1.7×10^{6} atoms/s).

Ttrap	Tbreed	Result
200-1100 ms	28 ms	no Fe detected at Miniball
300-1100 ms	298 ms	57(7)% Fe detected, agrees
		with predictions

Doppler corrected Coulex spectra (Miniball)

Find the error in the obstract

and Min on ice are and

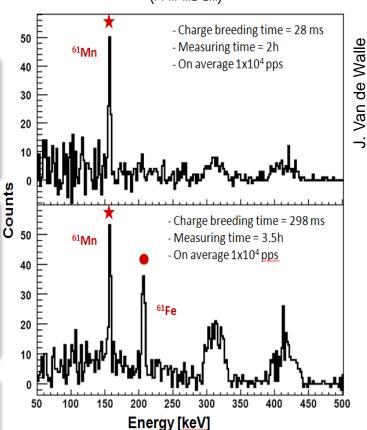
In-trap decay results (15468)

Method tested for the first time at REX-ISOLDE by utilizing an intense beam of ^{61}Mn ($T_{1/2}$ =675 ms; 1.7×10^{6} atoms/s).

Ttrap	Tbreed	Result
200-1100 ms	28 ms	no Fe detected at Miniball
300-1100 ms	298 ms	57(7)% Fe detected, agrees
		with predictions

Possible explanations

- Trapping potential in REXTRAP lower than in EBIS
- n+ ions after decay: no cooling in REXTRAP and flight time to EBIS changed


Conclusions

REX can now provide short lived isotopes of refractory elements with long release time (e.g. Fe)

Doppler corrected Coulex spectra (Miniball)

Find the error in the abstract

and win an ice are and

Beam-line from REX to Witch

Possible request to take entirely or almost entirely stripped ions from the REXEBIS and inject them into the Weak Interaction Trap for Charged Particles (WITCH) experiment.

Letter of intent

Nuclear electron capture in few-electron systems CERN-INTC-2008-026; INTC-I-077. – 2008.

Beam-line from REX to Witch

Possible request to take entirely or almost entirely stripped ions from the REXEBIS and inject them into the Weak Interaction Trap for Charged Particles (WITCH) experiment.

Letter of intent

Nuclear electron capture in few-electron systems CERN-INTC-2008-026; INTC-I-077. – 2008.

Breeding tests for 39 K (Z=19) listed below.

Charge state	Tbreed	Trap+EBIS eff	Comment
10+	14 ms	9.5%	
12+	28 ms	10%	
15+	110 ms	10%	~Tbreed
17+	250 ms	7%	~Tbreed
18+	500 ms	1%	difficult to optimise

Long breeding times, but it should be feasible to create Ar^{17+} within 400 ms.

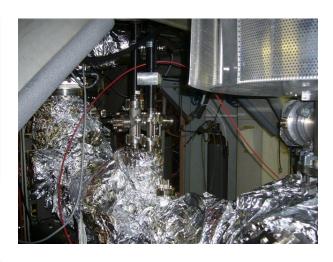
Room for improvement concerning efficiency and breeding time (increase electron beam energy)

Beam-line from REX to Witch

Possible request to take entirely or almost entirely stripped ions from the REXEBIS and inject them into the Weak Interaction Trap for Charged Particles (WITCH) experiment.

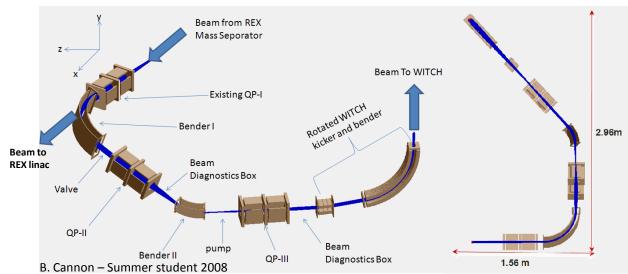
Letter of intent

Nuclear electron capture in few-electron systems CERN-INTC-2008-026 ; INTC-I-077. – 2008.

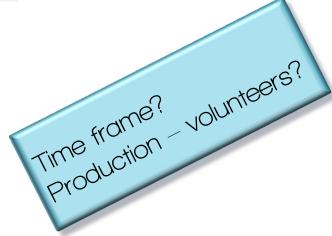

Breeding tests for 39 K (Z=19) listed below.

Charge state	Tbreed	Trap+EBIS eff	Comment
10+	14 ms	9.5%	
12+	28 ms	10%	
15+	110 ms	10%	~Tbreed
17+	250 ms	7%	~Tbreed
18+	500 ms	1%	difficult to optimise

Long breeding times, but it should be feasible to create Ar^{17+} within 400 ms.


Room for improvement concerning efficiency and breeding time (increase electron beam energy)

Suggested beam-line from REX to Witch

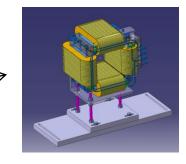


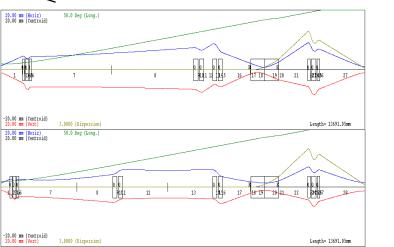
Elements

- •1 retractable 90 deg bender
- •2 quad doublets (existing design)
- •2 BD boxes (ISOLDE type?)
- •1 pumping station
- •1 valve
- support

- + Feasible
- + Transmission close to 100%
- Large emittance growth from 25 (over-estimation) to 100 π mm mrad
- Have to rotate kicker-bender part of WITCH

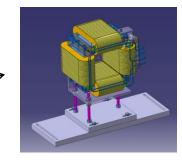
Following up alternative solutions

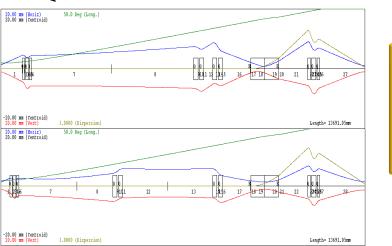

Next year's plans


- High cw current (>100 pA) from RFQ cooler directly into REXEBIS
- Publish REX yield database now with enhanced efficiencies and more statistics (work done within TARGSOL)
- Improved Monte Carlo simulation programme for in-trap decay predictions

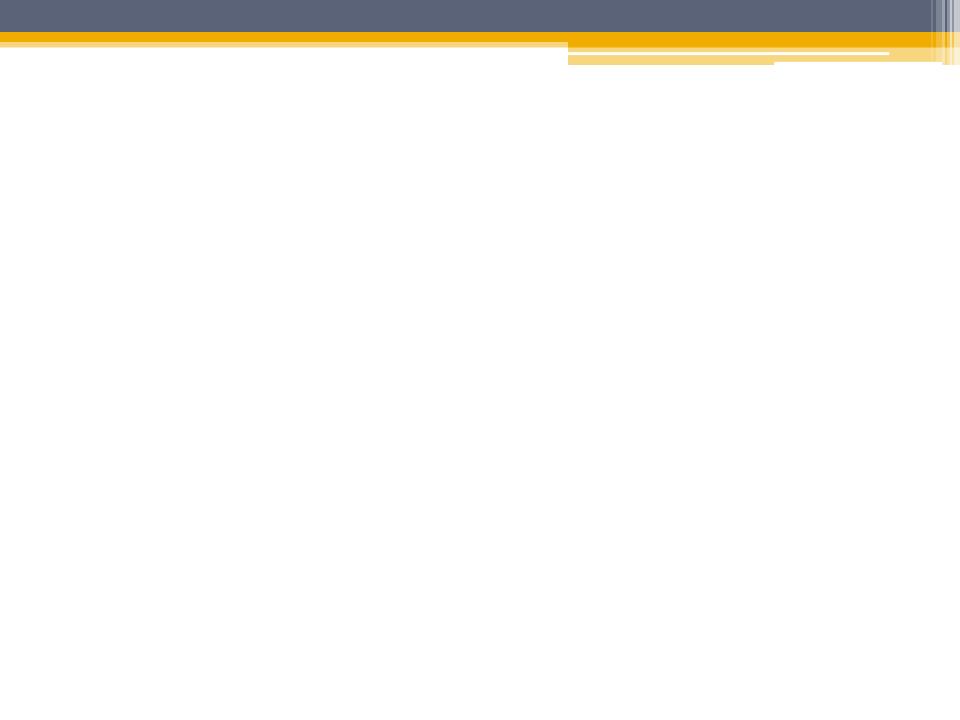
Next year's plans

- High cw current (>100 pA) from RFQ cooler directly into REXEBIS
- Publish REX yield database now with enhanced efficiencies and more statistics (work done within TARGSOL)
- Improved Monte Carlo simulation programme for in-trap decay predictions
- In addition, several Linac modifications
 beam optics reshuffling, 7-gap tuner, magnetic correctors etc

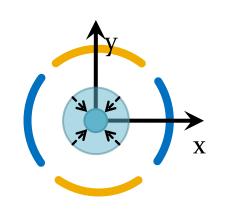


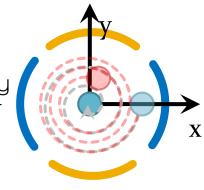


Next year's plans


- High cw current (>100 pA) from RFQ cooler directly into REXEBIS
- Publish REX yield database now with enhanced efficiencies and more statistics (work done within TARGSOL)
- Improved Monte Carlo simulation programme for in-trap decay predictions
- In addition, several Linac modifications beam optics reshuffling, 7-gap tuner, magnetic correctors etc

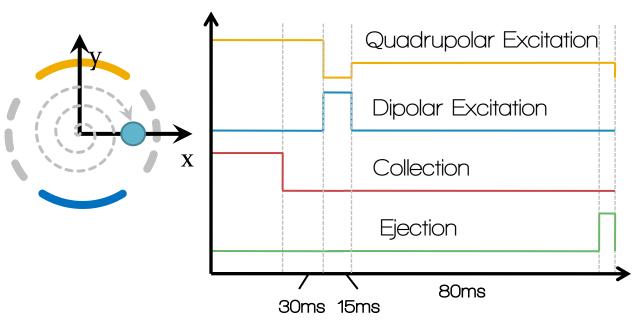
Most of the presented work would not have happened without bold initiatives and major efforts by Pierre Delahaye and Hanna Frånberg




Implemented cleaning method

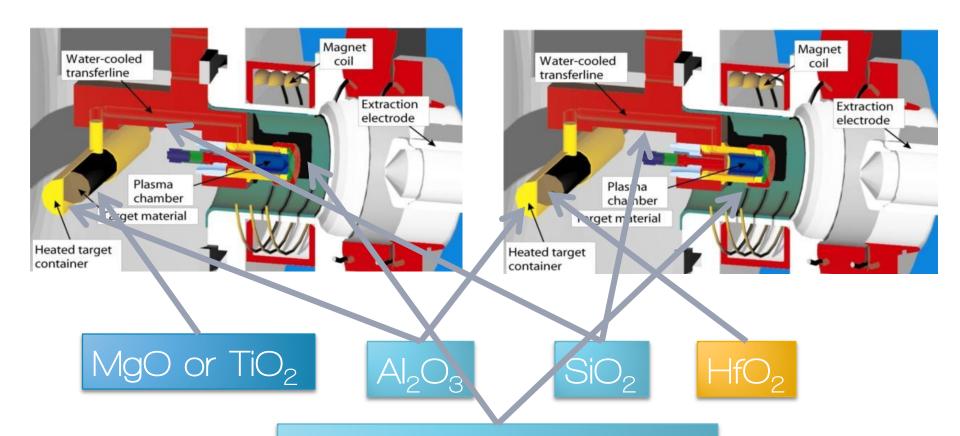
Shrinking the cloud using an (almost)

(1) mass independent, strong quadrupolar excitation



Recentering selectively only the mass of interest

Shifting the cloud from the center


(2) with a mass independent dipolar excitation

The ideal ISOLDE targets

Neutron deficient carbon

Neutron rich carbon

MiniMono ECR ion source

