News from the Other Side

Richard Catherall ISOLDE Workshop, CERN, 17th to 19th November 2008

Outline

- Project Plan
 - Project Breakdown Structure (PBS)
 - Layout and drawing codes
 - Work Breakdown Structure (WBS)
- LTG Target Area Laser Scan and Drawings
- LTS Target Shielding
- LTU Target Area Ventilation
- LTH Target Area Handling
- Summary

Project Breakdown Structure

- EDMS document number 927496
- Complex Codes
 - Layout = L
 - Experimental Hall = X
 - Target Area = T
 - Class A lab = J
- Target Codes
 - Target = T
 - Base = B
 - Extraction optics = E
 - Front End = F ...

Project Breakdown Structure

- Three tier structure used for PBS and drawings
- L Layout
 - T- target area
 - X experimental area
 - J Class A lab
 - > S Shielding
 - G Geodesy and Survey
 - B Beam Instrumentation
 - E Electrical Power
 - C Control
 - F Fluids
 - I Injection and transfer lines
 - K Civil engineering
 - H Handling, mechanics, supports
 - M Magnetic elements
 - P Personnel safety and radiation protection
 - U Ventilation and air conditioning
 - V Vacuum equipments
 - > A Access system
 - > Z Electrostatic systems
 - > D Management
 - W Waste disposal

- Examples of PBS
- > LTS
 - Layout, target area, shielding
- ▶ LTG
 - Layout, target area, survey...etc, etc.
- Examples of drawing codes
- > ISL ___0001
- > ISLLT
 - > ISL ISOLDE
 - L Layout
 - T target area
 - V Vacuum systems
 - X Exhaust
 - T Tanks
 - 0001 number 1
- Target Code example
- ISLTFV__0001

Project Plan ISO9001

- Steering Committee
 - Each critical phase to be assessed by Steering Committee
- Project Team
 - Made up from those responsible for the various PBS's
- Approval List
 - Members of Project Team
 - External members

LTG - Alignment and drawings

- Access to target area extremely difficult during both running and shutdown periods
- Need of updated and detailed plans of target area
- April 2008, in collaboration with TS-SU, a laser scan of the target area was carried out.

LTG - Alignment

Photographic documentation

Incorporation of the 3D scan in the 3D model

- Laser scan generates a cloud of points representing the internal geometry
- Points can be migrated into Catia model of the target area.
- Complemented with a photography survey

Drawings

1.6 - The CATIA 3D model.

Catia 3D model referenced in the CERN coordinate system

And in the process of being implemented in Smarteam

Air Activation

Air activation levels over 3 years as measured in chimney

900 800 700 600 500 400 300 200 100 0 1.5 0.0 0.5 1.0 2.0 2.5

- Two approaches to minimize the activated air released to the atmosphere during operation.
 - Reduce the amount of air activation through shielding - LTS
 - Reduce the amount of air released to the atmosphere - LTU

LTS - Shielding

- Initial Fluka simulations made on shielding and air activation by D. Hovarth in 2007.
 - Recommended 2 meters of shielding around target ...but to obtain ~1μSv/h background at 2 m
 - Air activation model in accordance with present situation
- More refined simulations required taking into account geometry and more realistic boundary conditions
- Need to consider shielding requirements for adjacent experimental hall

Shielding

- Experimental Hall Measurements at 5 μA of p-beam in 2005
 - HT room ~445μSv/h
 - At door n~10μSv/h, gamma ~3μSv/h
 - Merging switchyard ~20μSv/h
 - Water cooling tubes 300μSv/h at contact
 - > 5μSv/h at control room doors

tests 350 300 250 250 100 50 0 6/2 6/2 6/2 6/3 6/3 6/3 6/3 6/3 6/4 6/4 6/4 6/4

Activated air release measurements during 5µA p-beam

Air Activation

- In 2005, measurements recorded when taking 5μA of p-beam at HRS
 - Activated air emissions seem acceptable but measurement conditions unsure.

LTU -Ventilation

GPS HRS

- Dissociate target area and Class A lab ventilation systems
 - Eliminates the need for such a low underpressure in target area thus reducing air flow
 - Separate ventilation system for Class A lab
 - Requires double door sealing between the 2 areas

LTH -Target Handling

- Initial contact with Tampere University of Technology, Finland
- Participation by TS/HE (remote handling at CERN)
- Initial proposition based on existing facility
- Application of funding to the Finnish Technology Research Foundation
- Joint development leading to shared patent

Target Assembly

Summary

- ➤ The HIE Target Area sub-project is growing in importance hence the need for a solid project plan.
 - > The question of available resources remains
- ➤ The activated air issues witnessed at ISOLDE over the last 2 years have to be seriously considered within the HIE ISOLDE project .
- ➤ Radiation protection issues will play a key role in defining the future layout of the target area, experimental hall and equipment has to be addressed asap.
- Collaboration with Tampere University in Finland is promising.

Acknowledgements

- > A. Dorsival SC-RP
- L. Bruno AB-ATB-IF
- ► J. Helen Sarret AB-ATB-IF
- D. Hovarth AB-ATB
- Tampere University of Technology, Finland
- Tobias Dobers and TS-SU