Improved formalism for superallowed Fermi β decay between analogs and half-lives of the rp-process waiting point A~70 nuclei

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany

Exotic nuclei near the N = Z line in the A ~ 70 mass region

characteristics

- shape-coexistence and -mixing
- competition between proton-neutron and like-nucleon pairing correlations
- drastic changes in structure with particle number, angular momentum and excitation energy

expectations

- *large* isospin mixing effect on the *superallowed* Fermi β decay
- Gamow-Teller β decay of low-lying excited states in waiting-point nuclei *relevant* for the rp-process

requirements for the self-consistent models

- realistic effective interactions in large model spaces
- beyond mean-field approaches

complex VAMPIR

- variational approaches with symmetry projection before variation

General teoretical tools

Model space

$$\begin{split} \{ |i\rangle &\equiv |\tau n l j m \rangle \} \\ \{ c_i^{\dagger}, c_k^{\dagger}, \ldots \}_M \\ \{ c_i, c_k, \ldots \}_M \end{split}$$

Effective many-body Hamiltonian

$$\hat{H} = \sum_{i=1}^{M} \varepsilon(i) c_i^{\dagger} c_i + \frac{1}{4} \sum_{i,k,r,s=1}^{M} v(ikrs) c_i^{\dagger} c_k^{\dagger} c_s c_r$$

Hartree-Fock-Bogoliubov transformation

$$\begin{pmatrix} a^{\dagger} \\ a \end{pmatrix} = F \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix} = \begin{pmatrix} A^T & B^T \\ B^{\dagger} & A^{\dagger} \end{pmatrix} \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix}$$
$$a^+_{\alpha} = \Sigma^M_{i=1} (A_{i\alpha} c^+_i + B_{i\alpha} c_i)$$
$$a_{\alpha} = \Sigma^M_{i=1} (B^*_{i\alpha} c^+_i + A^*_{i\alpha} c_i)$$

Quasi-particle vacuum

$$|F\rangle = \prod_{\alpha=1}^{M'} a_{\alpha}|0\rangle \quad \text{with} \quad \left\{ \begin{array}{cc} a_{\alpha}|0\rangle \neq 0 & \text{for } \alpha = 1, ..., M' \leq M \\ a_{\alpha}|0\rangle = 0 & \text{else} \end{array} \right\}$$

 $\hat{\Theta}^{s}_{MK} \equiv \hat{P}(I; MK)\hat{Q}(N)\hat{Q}(Z)\hat{p}(\pi)$

Variational procedures

complex Vampir approach

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$

$$|\psi(F_1^s); sM
angle = rac{\hat{\Theta}_{M0}^s |F_1^s
angle}{\sqrt{\langle F_1^s | \hat{\Theta}_{00}^s |F_1^s
angle}}$$

complex Excited Vampir approach

$$\begin{split} |\psi(F_2^s); sM\rangle &= \hat{\Theta}_{M0}^s \left\{ |F_1^s\rangle \alpha_1^2 + |F_2^s\rangle \alpha_2^2 \right\} \\ \psi(F_i^s); sM\rangle &= \Sigma_{j=1}^i |\phi(F_j^s)\rangle \alpha_j^i \quad \text{for} \quad i = 1, ..., n-1 \\ |\phi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s |F_i^s\rangle \\ |\psi(F_n^s); sM\rangle &= \Sigma_{j=1}^{n-1} |\phi(F_j^s)\rangle \alpha_j^n + |\phi(F_n^s)\rangle \alpha_n^n \\ \alpha_n^n &= \langle \phi^n | [1 - \Sigma_{j,l=1}^{n-1} |\phi^j\rangle (A^{-1})_{jl} \langle \phi^l |] |\phi^n\rangle^{-1/2} \\ A_{jl} &\equiv \langle \phi^j |\phi^l\rangle \quad i, l = 1, ..., n-1 \\ \alpha_j^n &= -\Sigma_{l=1}^{n-1} (A^{-1})_{jl} \langle \phi^l |\phi^n\rangle \alpha_n^n \end{split}$$

$$\hat{S} \,\equiv\, \Sigma_{j,l=1}^{n-1} \, |\phi^j\rangle (A^{-1})_{jl} \langle \phi^l |$$

$$E_1^n \equiv \langle \psi^n | \hat{H} | \psi^n \rangle = - \frac{\langle \phi^n | (1 - \hat{S}) \hat{H} (1 - \hat{S}) | \phi^n \rangle}{\langle \psi^n | (1 - \hat{S}) | \phi^n \rangle}$$

$$(H - E^{(n)}N)f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

$$|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$$

A= 70 - 90 mass region 40 Ca - core model space (π, ν): $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 1d_{5/2} \ 0g_{9/2}$

(charge-symmetric basis + Coulomb contributions to the π -spe from the core)

renormalized G-matrix (OBEP, Bonn A) (Bonn CD)

- short range Gaussians in the nn, pp, np channels
- monopole shifts:

 $\begin{array}{l} \langle 0g_{9/2}0f;T=0|\hat{G}|0g_{9/2}0f;T=0\rangle\\ \\ \langle 1p1d_{5/2};T=0|\hat{G}|1p1d_{5/2};T=0\rangle \end{array}$

Superallowed Fermi β decay

Superallowed Fermi β decay between 0+ T=1 analog states

test of the CVC hypothesis test of the unitarity of the CKM matrix

$$ft(1+\delta_R)(1-\delta_c) = \frac{K}{2G_v^2(1+\Delta_R^v)}$$

 δc – isospin-symmetry-breaking-correction

Charge-symmetric effective Hamiltonian:

- same single particle energies for π and υ
- \forall Bonn A potential

Isospin-symmetry-breaking contributions:

- * electromagnetic interaction
 - Coulomb contribution to the single particle energies resulting from the Ca core
 - Coulomb two-body matrix elements
- * charge-dependent strong interaction
 - Bonn CD potential

Isospin-symmetry-breaking effective Hamiltonians:

- * Bonn A + Coulomb
- * Bonn CD + Coulomb

Radial mismatch problem - avoided

$$\tau_{+} = \Sigma_{\alpha} a_{a}^{+} b_{\alpha}$$

 $M_F = \langle f \mid \tau_+ \mid i \rangle$

 $A=82 \quad {}_{41}\mathrm{Nb}_{41} \rightarrow {}_{40}\mathrm{Zr}_{42}$ $0^+ \rightarrow 0^+$ GANIL, J. Garces Narro, PRC63(2001)044307 $T_{1/2} = 52(6)$ ms

The total (S_T) and analog (S_{g-g}) Fermi β decay strengths for the charge-symmetric , Bonn A + Coulomb, and Bonn CD + Coulomb effective Hamiltonian

harge-symn	netric Ham.	Bonn A	+ Coulomb	Bonn CD	+ Coulomb
S_T	\mathbf{S}_{g-g}	S_T	\mathbf{S}_{g-g}	S_T	\mathbf{S}_{g-g}
1.9715	1.9626	1.9761	1.9357	1.9752	1.9293

Gamow-Teller β decay of ⁷²Kr

CERN/ISOLDE I. Piqueras, Eur. Phys. J. A16(2003)313

 72 Kr \rightarrow 72 Br

 $Q_{EC} = 5.040 \pm 0.375 \, MeV$

 $0^+_{ground-state} \rightarrow 1^+$

 $0^+_{first-excited} \rightarrow 1^+ \qquad E_{0_2^+} = 0.671 \, MeV$

 $\begin{array}{ccc} 2^+_{yrast} & \longrightarrow 1^+ & E_{2_1^+} = 0.710 \ \text{MeV} \\ & \longrightarrow 2^+ \\ & \longrightarrow 3^+ \end{array}$

The amount of mixing for the considered states of the 72 Kr nucleus (ms3).

	Bonn A		Bonn CD			
$I[\hbar]$	o-mixing	p-mixing	o-mixing	p-mixing		
0_{1}^{+}	64(2)%	29(2)(1)(1)%	50(3)%	38(5)(3)%		
0^{+}_{2}	35(2)%	57(3)(1)(1)%	49(2)%	46(3)%		
2_{1}^{+}	92(1)%	6%	76(1)%	20(3)%		

The amount of mixing for the lowest calculated 1^+ states of ⁷²Br with significant B(GT) (Bonn A/Bonn CD). o-mixing /p-mixing 85(12)% 81(11)(4)% 87(2)(2)(2)(2)(1)(1)% 81(4)(4)(2)(2)(1)(1)(1)%78(16)(2)(1)% 78(4)(3)(3)(2)(2)(1)(1)(1)(1)% 49(24)(8)(6)(5)(2)(1)(1)(1)%32(31)(15)(9)(3)(2)(1)(1)(1)(1)% 79(15)(1)% 31(2)(2)(1)%20(16)(13)(2)(1)(1)(1)(1)(1)(1)(1)(1)%85(12)(1)% 49(8)(2)(1)% 34(1)(1)% 32(4)(1)(1)%54(2)(1)(1)(1)%69(26)(1)(1)(1)% 72(6)(4)(4)(3)(3)(2)(2)(1)(1)%69(24)(3)(1)(1)% 68(18)(8)(1)% 66(16)(5)(2)(1)(1)(1)(1)(1)(1)% 2(1)%2(1)% 56(23)(5)(2)(2)(2)(1)(1)(1)(1)%49(26)(9)(5)(3)(1)(1)(1)%

The spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest 1⁺ states of ⁷²Br (Bonn A/BonnCD).

48.5	48.7	-49.9	-49.4	46.5	45.5	-51.6	-50.1	-49.5	46.8
-11.5	8.7	-46.5	-48.7	45.4	44.0	-53.5	-39.1	27.0	41.0
-48.9	-46.5	-49.2	42.5	-39.8	35.8	-46.3	41.8	-45.0	-43.5
		2002-330-	1912 - 1924-						
48.2	10.5	- <mark>11.5</mark>	-49.6	46.6	-51.8	45.6	-50.2	-50.2	-51.8
48.2 46.5	10.5 43.8	-11.5 -46.4	-49.6 -49.2	46.6 46.3	-51.8 -50.1	45.6 -9.0	-50.2 -16.4	-50.2 -40.8	-51.8 -40.6

$$\frac{1}{T_{1/2}} = \frac{g_A^2}{D} \sum_i f(Z, E_i) |\langle 1_i^+ || \beta^+ || 0^+ \rangle|^2$$

D = 6146 s $g_A = 1.26$

 $T_{1/2}^{exp} = 17.1(2) s$

 $T_{1/2}$ (gs) = 20.8 s (Bonn A) 18.9 s (Bonn CD)

 $T_{1/2}$ (first-excited 0⁺) = 17.3 s (Bonn A) 12.9 s (Bonn CD)

 $T_{1/2}(yrast 2^+ \rightarrow 1^+) = 18.7 \text{ s} (Bonn \text{ A})$ 21.6 s (Bonn CD) $T_{1/2}(yrast 2^+ \rightarrow 3^+) = 19.5 \text{ s} (Bonn \text{ A})$

$$\lambda = \ln 2/K \sum_{i} [(2J_{i}+1) e^{-E} i^{/(kT)}] / G(Z,A,T) \sum_{j} B_{ij} \Phi_{ij}$$

i - parent states j - daughter states

 $G(Z,A,T) = \sum_{i} e^{-E_{i}/(\kappa T)}$ (partition function of the parent nucleus)

Bij = Bij (GT)

 Φ_{ii} – phase space integral

X-ray bursts T < 2 GK

In the astrophysical environment of the X-ray bursts the effect of the decay of the lowest excited states of ⁷²Kr is within the uncertainty of the ground-state half-life

 \rightarrow first theoretical results predicting no influence from the lowest excited states on the effective half-life

A. Petrovici et al., Phys. Rev. C78 (2008) 044315

Gamow-Teller β decay of ⁶⁸Se

CERN/ISOLDE P. Baumann et al., Phys. Rev. C50 (1994) 1180

 $^{68}Se \rightarrow ^{68}As \qquad 0^+ \rightarrow 1^+ \qquad Q_{_{EC}} = 4.730 \pm 0.310 \, MeV$

Summary and outlook

• improved formalism for calculating the isospin-symmetry-breaking effect on the superallowed Fermi β decay was applied for the first time to the ⁸²Nb \rightarrow ⁸²Zr decay within the *complex* Excited Vampir model describing self-consistently both the analog and non-analog branches

• self-consistent approach to the Gamow-Teller β decay of the ground state, firstexcited 0+ and yrast 2⁺ of ⁷²Kr to the 1⁺ (and for yrast 2⁺, also to the 2⁺ and 3⁺) states in the β window in ⁷²Br gives good agreement with the available data

 \bullet at the temperatures of the X-ray bursts the decay of the lowest excited states will not influence the effective half-life of $~^{72}{\rm Kr}$

• preliminary results on the Gamow-Teller β decay of the ground state of 68 Se to 68 As (dominated by shape coexistence) indicate agreement with the measured half-life

• the uncertainties in the effective interaction require systematic investigations

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Radu

National Institute for Physics and Nuclear Engineering, Bucharest, Romania