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Outline

Tilted Folil polarization up to now — few examples:
= Atomic Polarization at Oblique Angles
= Induced Nuclear Polarization : Multi-foils
= Nuclear Polarization — Excited States (y decay)
= Quadrupole Moments (signs) — Isomeric States

= Magnetic Moments — Ground States (3 decay)

Advantages of installing TF+p3-NMR setup after REX

Possibilities for Nuclear and Solid-state physics studies



Nuclear orientation — alignment vs.
polarization
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Atomic Tilted Foil Polarization
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FIG. 1. Schematic illustrations of the experimental
configuration: (a) Tilted-foil case. (b) Grazing-
incidence case. Photons emitted in the —z direction
(out of the page) are detected.

used in the configuration shown in Fig. 1. The
tilt angle 6, defined as the angle between the
surface normal and the beam direction, was
varied from - 80° to +80°. The measured polari-
zation is expressed in terms of the three nor-
malized Stokes parameters defined in the follow-
ing standard way!®:

S/I=Uruc=I1uc)/Truc+ILuc),
M/I= Uo—fgo)/(lu"‘fsc)! . @
C/I= 045—1135}/([454'1135)1
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FIG. 2. Circular polarization, S/I, of He* (n = 4 to
n = 3) at 468.6 nm as a function of tilt angle ¢ at a con~
stant emerging energy of 530 keV for both grazing in-
cidence with a silicon crystal (open circles), and for
beam-foil transmission with a silicon erystal (solid
circles), and a carbon foil (open squares). The inset
shows the tilt-angle dependence of S /I in the vicinity
of a low-index channeling direction with channeling
critical angle of approximately 0.5°. The channeling
direction was indicated by a factor of 5 decrease in
backscattered yield.

T. Tolk et al. PRL47, 487 (1981)

Large circular polarization observed
* ~50%

(equivalent to a polarization of the

atomic spins)

The polarization identified as a result of the ion-surface interactions
(no bulk-effects influences)

Smooth behavior of the polarization, independently on the geometry
(transmission or reflection)



From atomic to nuclear polarization

M. Hass et al. / Nuclear polarization
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Fig. 1. (a) Hyperfine interaction following recoil from a tilted foil. J is shown polarized along the tilt
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Nuclear polarization of excited states
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Fig. 3. Left-right asymmetry of the Coulomb excited *!'V on *°®Pb
at 195 MeV for the three main decay y-rays. Pb x-rays and y-particle
random coincidences (open circle}

J. Bendahan et al., ZPA 331, 343 (88)

Coulomb excitation of polarized nuclei

lV@50 MeV 2> TF 2 2V (I"=7/27), 13*
charge state = 195 MeV - Coulex on Pb

e 51\ beam intensity ~ 1 pnA
e eft-right asymmetry

e strong velocity dependence of the
polarization observed:

P, =1.2(2)%at P = 6.5%
e P,>10(1) % at P = 4.6%



Quadrupole moments (signs) — isomeric states

e Time Dependent Perturbed Angular Distribution (TDPAD) with quadrupole interaction

W(t)=1+ > al, V21 +1p{F G, (t) > the angular distribution

ki K, ,Q

the perturbation factors:

( K,k .

Y Sucos(negt)  fork,+k, =even alignment
qaq _

Gk, =+

—i)_Susin(nagt) fork +k,=odd  polarization

With a polarized ensemble of nuclei one can obtain both the
magnitude and the sign of the quadrupole moment



Alignment and polarization Q-TDPAD patterns in Gd isotopes.

E. Dafni et al. / Nuclear polarization
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E. Dafni et al., NPA 443 135 (85)
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Magnetic moments of ground states — 2>Mg

*B3Mg(I"=3/2*, T,,, =11.3 s), 520 keV energy (2*)
* 3x10° ions/s (~50% transm. through the foils)

¢ host temperature 5-10 K (14 s relaxation time)
e 2 C foils at 75° (3-4 pg/cm?)

¢ 0.73(3)% asymmetry

M. Lindroos et al., HI 129, 109 (2000)
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Magnetic moments of ground states — 1’Ne

ol7Ne (|=1/2" T1/2 =109 ms) L. Baby et al., JP G30, 519 (2004)
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Figure 2The asymmetry parameter as a function of the rf frequency. The circles represent the
asymmetry with rf power ‘ON’ and the triangle represents the asymmetry obtained with rf power
‘OFF’. The solid line is at yielding the value of y= 0.74 nm.



Advantages of installing TF+3-NMR setup after REX

REX@ HIE ISOLDE ADVANTAGES: Higher energy, higher yields:

Hence:
e Better control of the velocity — “no” multiple scattering in foils.
e a study of the polarization as a function of the ions velocity is essential
e \Variety of charge states, configurations.
e dependence of the polarization on the atomic configurations
e Ease of operation!!
* no need to work under high voltage
e More “exotic” nuclei accessible

Necessary detailed studies of the atomic polarization and it transfer to the
nuclear spins — REX is the place to do it!



Possibilities for Nuclear physics studies

e Nuclear moment measurements of exotic nuclei

Example — mirror nuclei in the fp shell:
Z=N+1 nuclei - °>°Ni -- >>Co, °°Zn --

Mirror Nuclei in the f Shell
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Semiconductor Spectroscopy
sensitive to chemical naIure;iQi: or electronic properties 3
(some reqire radioactive istopes @& )
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Experimental techniques used with radioactive isotopes at ISOLDE




Beta-NMR: solid state physics aspects

» Very sensitive — 102 atoms is enough, compare with 10! for most other nuclear
techniques

» An additional local probe of materials, complementing existing techniques

Potential applications in the study of:

* Nanomaterials, the extra sensitivity of B-NMR has advantages over other methods
e.g. less damage, fewer atoms needed; e.g. single molecule magnetic systems.

= Can investigate local properties of materials, ranging from semiconductors to
biosystems. Doping issues II-VI semiconductors (ZnSe) already studied at ISOLDE using
this method: electric field gradient interactions. Current projects could involve ZnO.

= Can be used to study diffusion in materials, e.g. monitoring the spin-lattice

relaxation 8Li/B-NMR has been used as a monitor of jump rates in nanocrystalline
ceramics.

= Disadvantages, requires relatively high degree of polarization (>10%)
= Experiments done in-situ therefore difficult to vary sample parameters, this could
be a challenge (though not insurmountable) for biophysics.




B-NMR applied to metal ions in biological systems

Cu(l)/Cu(ll) are essential in many
redoxprocesses and electron
transport in biology, e.g. Iin
photosynthesis.

Cu(l) is “invisible” in most (except
X-ray and nuclear) spectroscopic
techniques because it is a closed
shell ion

Measurements of spectroscopic
properties (such as electric field
gradients) for Cu(l) in proteins
would have considerable impact
INn bioinorganic chemistry Azurin — an example of a Cu(l)/Cu(ll)

Other elements of particular dependent electron transporting protein
Interest: Mn, Fe, NI, Zn




The B-NMR setup moving to ISOLDE

* From HMI, Berlin — Wolf-Dietrich Zeitz

What we’re not N .
What we are... Wolf-Dietrich with

getting the electronics



Challenges for ISOLDE:

=Space at REX

Przemek is helping to set things up
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