Transfer reactions with ⁸Li (a status report)

PhD student: Elisabeth Tengborn
Supervisor: Thomas Nilsson
Subatomic physics, Chalmers University of Technology

Scientific motivation

- Structure of neutron-rich lithium isotopes through a set of experiments
 - isotopic chain with the last bound two-neutron halo nucleus ¹¹Li
- ➤ Transfer reactions in inverse kinematics allows us to obtain the angular distribution →
 - I value of the populated state
 - How large part of the wave function for the populated state can be described as a single particle state
- Made possible thanks to REX-ISOLDE
- Compare with theoretical models:
 - ab-initio
 - shell model through the spectroscopic factors

Scientific motivation

> ²H(⁹Li,t)⁸Li (Jeppesen et al. Phys. Lett. B 635 (2006) 17-22) Discrepancy in spectroscopic

factors on absolute scale

▶ Benchmark exp
 Reaction channels:
 ²H(⁸Li,p)⁹Li(*) – (d,p)
 ²H(⁸Li,d)⁸Li(*) – (d,d)

 $^{2}H(^{8}Li,t)^{7}Li^{(*)} - (d,t)$

Experimental set-up

 ΔE + E detector = telescope detector

Particle identification

Using the telescope detector in the forward direction:

Graphical cut

Energy vs. angle distributions

 $8Li + 2H \rightarrow 9Li^* + p$

The kinematical curves overlaid represent feeding to the known low-lying states in ⁹Li. In each The curves correspond to reactions in the beginning and in the end of the target.

Excitation energy curves

$$E_{ex}(^{8}Li) \longrightarrow$$

Angular distribution, absolute scale

To Do

- Angular distribution for the elastic scattering channel
- Compare the different reaction channels with theoretical calculations (DWBA calculations) by Antonio Moro at the Departamento de Física Atómica, Molecular y Nuclear - Universidad de Sevilla.

And now the oxygen is probably gone... so thank you for your attention!