

The WITCH Experiment status and perspectives

Simon van Gorp^a

N. Severijns^a, Michaël Tandecki^a, E. Traykov^a, F. Wauters^a, M. Beck^b, P. Friedag^b, C. Weinheimer^b, A. Herlert^c, F. Wenander^c, V. Yu. Kozlov^d Universities of ^aLeuven, ^bMünster, ^cCERN and ^dF.Z.Karlsruhe

17th of November, Isolde Workshop 2008

Outline

- WITCH set-up
 - Motivation
 - Experimental overview
- 2 'History' of WITCH
 - 124 In run Nov 2006
 - Offline tests
 - 35 Ar run Oct 2007
- Discussion of the Issues
 - Bad Vacuum
 - Unwanted Penning traps
- Independent set-up
 - Magnetic Shielding
 - RFQ for ion source
- 5 Additional Physics with WITCH
 - Tapestation
- 6 Conclusion & Outlook

Physics motivation

$$\mathcal{H}_{\beta} = f(C_S, C_V, C_T, C_A, C_P)$$

e.g: Fermi β decay $(0^+ \rightarrow 0^+)$

$$W(\theta) \approx 1 + a \frac{v}{c} cos\theta$$

Current experimental limits: $\frac{C_S}{C_{sr}} < 7\%$

$$a \approx 1 - \frac{|C_S|^2 + |C_S'|^2}{|C_V|^2}$$

Weak Interaction Trap for Charged Particles

- A Double Penning trap system to prepare the ions acts as a scattering-free source
- Retardation spectrometer to probe the energy of the recoiling ions

MCP detector

Retardation spectrometer

Recoil Energy (eV)

Recoil Energy (eV)

¹²⁴In run - Nov 2006

- First time we encountered the secondary ionisation problem
- This prevented us from using the spectrometer as it was intended
- With a trick the first recoil ion energy spectrum could be measured

¹²⁴In Recoil Spectrum - Charge state distribution

Fit parameters

- Potential offset
- Isomer contribution
- Overall scaling
- Background scaling

- β charge state scaling
- Gaussian charge state position
- Gaussian charge state width

offline tests - Dec 2006 / June 2007

Figure: Example of the problem

- β -particles do not seem to cause anything, γ 's are the culprit
- Later tests (June 2007) did not show an uncontrollable effect anymore. Possible reasons: modified electronics + better vacuum + luck

³⁵Ar run - Oct 2007

The run did not go as hoped..

³⁵Cl contamination

At first: The CI:Ar was 400:1

Optimized: 25:1 ratio, but greatly reduced yield

This issue is solved by the target group

Charge exchange

REXTRAP: trap-halflife of 63 ms

WITCH: Even worse trap-halflife; this prevented us from preparing the ion cloud

- ⇒ contaminations arising from Teflon buffergastube in the system.
- \Rightarrow We are improving the buffergassystem to ensure a pure buffer gas
- The secondary ionisation returned with a vengeance
 - ⇒ We are improving the vacuum, electropolishing the electrodes and investigating this problem throughly

vacuum improvements

Vacuum improvements:

- More careful choice of materials with a low outgassing rate (but also non-magnetic and bakable at 200°C): no teflon (or other plastics), Sn, Zn, etc.
 - → Especially true for the buffer gas sytem!
- More careful treatment of all the parts
- Installation of NEG (Non-evaporative getter) material in the trap and spectrometer region
- Decent bake-out procedure; also needed to activate the getters

Definition of a Penning Trap

Definition

Penning traps are devices for the storage of charged particles using a constant static magnetic field and a spatially inhomogeneous static electric field

- Any potential well along a magnetic field line can trap particles
- Electrode walls also count as potential barriers
- Common to all retardation spectrometers (e.g. aSPECT and KATRIN)
- Big topic of investigation in KATRIN

Unwanted Penning Traps in WITCH

Obstacles:

- We cannot power the re-acceleration electrodes to their nominal values
- Huge discharges when combining radioactivity and switching of the spectrometer

Possible unwanted traps

- An electron trap (vacuum-to-vacuum and vacuum-to-cathode) between the 9T field and SPACCE01 (-2 kV)
- A trap for positive particles between the analysis plane (+500V) and the 9T field
- A (vacuum-to-vacuum) electron trap in the Einzel lens

Possible solutions (a)

- Electropolishing of re-acceleration electrodes
 This might remove the field emission and loading of electron traps
- Periodically empty the particle traps
 At KATRIN tests were done with a wire periodically crossing the trap volume

Possible solutions (b)

Removal of the electron trap in the Einzel lens by using a compenstation magnet

Bonus: lower β background on MCP detector

Magnetic Shielding of REX-EBIS

- If the WITCH-magnet is at 9T. The field at REX-EBIS is still 3mT. \rightarrow Unable to do offline tests when REX needs a beam (...)
 - → Magnetic shielding and a high intensity well bunched ion source are needed.
- When powering up the WITCH magnet to 9T, the REX-postacceleration beam is lost at 0.2 T.

Magnetic Shielding Design

- 2 Seperate boxes made of 1mm mu-metal
- Final construction will be rectangular
- This gives an attenuation factor >50

Initial magnetic field flux B, = 3.6 mT 0.3e-4

A bunched ion source

- WITCH's surface ionisation source has at most 1 nA Intensity, BUT only 2 μ s are used
- Using the ion source in combination with a small RFQ one can get bunched beams up to 10(100)picoAmp ($\sim 10^7$ particles)

Isolde Workshop 2008

Tapestation Investigation

- The WITCH PenningTraps currently have a mass resolution 300.000
- Simulations prove that it is possible to accelerate the beam up to 30 kV and still have a beamspot of maximum 2mm
- The acceleration is done by switching a 1 m large electrode

Conclusion & Outlook

Conclusion

- This year WITCH choses to improve the set-up (new buffergas-system, vacuum-improvements, electro-polished electrodes) rather than taking beamtime
- At the same time a magnetic shielding and a high intensity well bunched ion-source are being developed as well

Outlook

- When all the testing has been done and the proposed solutions work a run will be next year
- The use of a tapestation (in combination with the good mass resolving power of the traps) is being investigated as well