COMPLEX OXIDE THIN FILMS AND HETEROSTRUCTURES-SCIENTIFIC OPPORTUNITIES-TECHNOLOGICAL CHALLENGES

H.-U. HABERMEIER MPI - FKF STUTTGART

OUTLINE

1. INTRODUCTION - PHENOMENOLOGY

SOME COMMENTS ON COMPLEX OXIDE HETEROSTRUCTURES FERROMAGNETIC SUPERCONDUCTOR,; CUPRATE SUPERCONDUCTORS, MANGANITES, AND THEIR COMBINATION

- 2. SAMPLES AND THEIR BASIC CHARACTERIZATION
- 3. OXIDE FERROMAGNET- SUPERCONDUCTOR INTERACTIONS STRUCTURAL – ELECTRONIC – MAGNETIC
- 4. TOWARDS AN UNIFIED VIEW
- 5. CONCLUSIONS

COOPERATION WITH

Ch. Bernhard², J. Chakhalian^{1,3}, G. Christiani¹, B. Keimer¹ S. Soltan¹, and G. Ravikumar⁴

¹MPI-FKF Heisenbergstr. 1 D 70569 Stuttgart, Germany

- ² University Fribourg, Switzerland
- ³ University of Arkansas, Fayetteville, Arkansas, U.S.A.
- ⁴ Bhaba Atomic Research Institute, Mumbai, India

1. INTRODUCTION - PHENOMENOLOGY (1) COMMENTS ON OXIDE HETEROSTRUCTURES

QUESTIONS:

- a.) who wins or peaceful together or mutual ignorance?
- b.) crosstalk ??
- c.) interfaces??
- d.) construct new materials ??

ANALOGY TO METALS: Giant Magnetoresistance

Tunneling Magnetoresistance 2007 Peter Grünberg / Albert Fert

MESSAGE FROM NIKKO FOR SCIENTISTS

IF YOU CLOSE YOUR EYES AND SHUT YOUR EARS -YOU MUST NOT TALK BUT IF YOU TALK THEN

1. INTRODUCTION - PHENOMENOLOGY (2) COMMENTS ON OXIDE HETEROSTRUCTURES

A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface

Nature 427 (2004) 423

ELECTRONIC RECONSTRUCTION @ INTERFACE

G. Khaliullin PRL 100 (2008) 015404 ARTIFICIAL DOUBLE PEROVSKITES LaNiM'O₃

Orbital Order and Possible Superconductivity in LaNiO₃ / LaMO₃ Superlattices

Jir ı́ Chaloupka and Giniyat Khaliullin

PRL 100, 016404 (2008)

"......that artificially tailored superlattices may open new perspectives for the high-Tcsuperconductivity. We hope that the theoretical expectations for our proposal (La₂Ni MO_6) are encouraging enough to motivate experimental efforts"

Theorists dream Theorists dream Theorists dream

THERMOELECTRICITY IN STO BASED SUPERLATTICES H Ohta et al Nature Mat 6 (2007) 129 and Materials Today October 2007

Watch out for the lack of oxygen

Interfaces between certain insulating perovskite oxides show unexpected properties, such as high conductivity and magnetism. Oxygen vacancies seem to be important in these structures, but the puzzle is far from being understood.

James Eckstein: Nature Mat. July 2007

SrTiO₃ and oxygen

PHENOMENOLOGY (3)

COMMENTS ON FERROMAGNETIC SUPERCONDUCTORS, CUPRATE SUPERCONDUCTORS, MANGANITES, AND THEIR COMBINATION

FERROMAGNETIC SUPERCONDUCTORS Ruthenocuprates e.g. RuSr₂GdCu₂O₈ **DISCOVERY:** L. Bauernfeind and H. F. Magnetic Braun Physica C 254, 151 (1995). **RuO** T_M~135K **Octahedra COEXISTENCE of FM and SC** Ch. Bernhard et al., Phys. Rev. B 59, 14099 CuO₅ Pyramids Supercond. (1999) $T_c \sim 50K$ FM vs. AFM J.W. Lynn et. al. Phys. Rev. AF, $T_{N} = 2.6K$ B 61, R14964 (2000) THIN FILMS O. I. Lebedev, H.-U. H et al. Phys. Rev. B. 71 (2005) 134523 С T_c and T^{Curie} < bulk values a=3.88Å c=11,57Å

CUPRATE SUPERCONDUCTORS

- Antiferromagnetic ground state
- d- wave symmetry of order parameter

 T_c and conductivity sensitively depend on CuO_2 plane doping

WHAT REMAINS IN HTS RESEARCH AFTER 20 YEARS??

MECHANISM(S) CAUSING HIGH T_c EXPLORATION OF HTS **ROLE OF PSEUDOGAP**

APPLICATION POTENTIAL

Buddhist Udana 100 BC

6 blind men and the elephant

FERROMAGNETIC MANGANITES

WHY IS THAT INTERESTING ??

Electronic Structure @ Interface ?

Consequences of its modification, if any ?

Is something new emerging ?

PRACTICALLY

Are 1 D artificial (oxide) pinning centers only non-SC precpitates ?

What, if they are FM?

What, if they form regular structures ?

GOAL

USE CUPRATE MANGANITE HETEROSTRUCTURES AND SUPERLATTICES AS PROTOTYPE MATERIALS TO STUDY THE INTERACTION OF OXIDES WITH DIFFERENT FUNCTIONALITIES

FOCUS ON ROLE OF THE INTERFACE

ACTIVITIES INITIATED BY

G. Jakob et al. Appl. Phys. Lett 66 (1995) 2564

P. Przyslupski et al. IEEE Trans. Appl. Superc. 7, 2192 (1997)

P. Prieto, P. Vivas, G. Campillo, E. Baca, L. F. Castro, M. Varela, C. Ballesteros, J. E. Villegas, D. Arias, C. Leon, and J. Santamaria,

J. Appl. Phys. 89, (2001) 8026

H.-U. Habermeier et al. Physica C 354, (2001) 298

2. SAMPLE PREPARATION AND CHARACTERIZATION

PULSED LASER DEPOSITION

Pyrometric temperature control 180nm YBCO dep. rate ~15 nm/min Total high T exposure < 20 min KrF - Excimerlaser 248 nm Oxygen: .5 mbar Computer - controlled target exchange

UHV – PLD SYSTEM WITH RHEED and TRANSFER-CHAMBER

THIN FILM GROWTH CONTROL BY RHEED

HRTEM YBCO /LCMO

3. OXIDE FERROMAGNET - SUPERCONDUCTOR INTERACTIONS

STRUCTURAL - ELECTRONIC - MAGNETIC

H.-U. H., G. Christiani et al. Physica C 364 (2001) 298 H.-U. H. and G. Christiani J. of Supercond. 15 (2002) 425

YBCO- LCMO 5nmx5nm superlattice

T. Holden, C. Bernhard, H.-U. H. et al., Phys. Rev. B 69, (2004) 064505

CHARGE REDISTRIBUTION AT INTERFACE

Distance for movement of charges is given by Thomas Fermi screening length

Bohr radius

Charge carrier density

Typically 10¹⁹-10²² cm⁻³ in complex oxides

 $\lambda_{TF} = 2 - 6 \text{ Å}$ (1–2 unit cells)

EXPERIMENTALLY: STEM-EELS STUDIES

M. Varela, S. Pennycock, J. Santamaria et al.. cond-mat 0508564

PHASE DIAGRAMS Charge Transfer across the interface

IS THAT THE WHOLE STORY ???

HRTEM (50nm YBCO / 3nm LCMO / 50 nm YBCO

POLARIZED RESONANT X-RAY ABSORPTION Recent results Chakhalian, Freeland, HUH, Keimer, Khaliullin

Science **318** (2007) 1114

Occupancy of Cu d-orbitals at the LCMO-YBCO interface as a function of Mn hole on-site energy, as predicted by the exact diagonalization calculations.

J. Chakhalian ,J.W. Freeland, H.-U. H., G. Cristiani,G. Khaliullin, M. van Veenendaal, and B. Keimer Science 2007

MAGNETIC CORRELATIONS AT INTERFACE AS REVEALED BY NEUTRON REFLECTOMETRY

specular neutron reflectivity

→ Bragg reflections due to structural and magnetic periodicity

second Bragg peak forbidden if structural and magnetic denisty profiles are equal

Resonant soft X-ray absorption (XAS)

J. Chakhalian , J.W. Freeland, H.-U. H., G. Christiani, G. Khaliullin, Ch. Bernhard, and B. Keimer Nature Physics 2 (2006) 244

X-ray magnetic dichroism in YBCO/LCMO SL

• Magnetic moment on Cu below T_{sc} !

Cu and Mn magnetic moments are anti-aligned.
MODEL vs. REALITY

U. Kaiser+ Z Zhang Uni Ulm Okt 2007

В

А

magnetization profile

assume bulk orbital occupancy is maintained at interface

interface

→ antiferromagnetic coupling, as observed

J.Chakhalian, J. Freeland, H.-U. H. et al. Nature Physics 2(2006) 244

INTERFACE PROPERTIES DOMINATE "BULK" PROPERTIES

 $\zeta_{\rm FM} = (\mathbf{D}_{\rm FM} / \mathbf{J})^{1/2}$

SELF - INJECTION FROM FM SIDE

$$\Delta_{qp}/\Delta(0) = 1 - 2n_{qp} / 4N(0) \Delta(0)$$

S. Soltan, J. Albrecht, H.-U.H. PRB 70 (2004) 144517

IS THAT THE WHOLE STORY ???

nanoscopic medium length scale 3 nm < x < 10nm

T. Holden et al., Phys. Rev. B 69, (2004) 064505

5. CONCLUSIONS

- IN YBCO-LCMO SUPERLATTICES THERE ARE INTERACTIONS AT DIFFERENT LENGTH SCALES ξ AT WORK
- 2. FOR $\xi < 3nm$ ORBITAL RECONSTRUCTION AND CHARGE TRANSFER EFFECTS DOMINATE
- 3. $3nm < \xi < 10nm$ IS THE REGIME FOR SPINDIFFUSION
- 4. MAGNETIC INTERACTIONS DOMINATE AT LENGTH SCALES IN THE SUB- μ m RANGE

Web-page from Argonne National Lab

THANKS FOR YOUR ATTENTION

FROM THE BEGINNING

QUESTIONS COMMENTS CRITICISM ?

2. Spin-polarized quasiparticle injection into HTSC thin films The role of the spin in cuprates

S.Soltan, J. Albrecht and H.-U. H. .Solid State Comm. 135 (2005) 461

SPIN MATTERS !!!

BHATTACHARJEE and SARDAR based on OWEN – SCALAPINO µ* model (excess QP's modified chem. potential)

2. Oscillatory Phenomena in Metallic FM / SC Hybrids Larkin-Ovchinnikov-Fulde-Ferrel [LOFF] States

Mühge et al. PRL 77 (1996)1857

PHYSICALLY MEANINGFUL MODELS

• Antiferromagnetic coupling between the FM layers Doubled period - additional Bragg peaks at $q_z = 0.022$ Å and $q_z = 0.053$ Å not observed

Magnetic roughness of any length scale
Faster decay of reflectivity no 2nd Bragg peak appears

• Conventional magnetic proximity effect Exponential decay of magnetization in SC failure

LATTICE MISMATCH (no correction w.r.t. deposition temperature and different thermal expansion coefficients)

YBCO/LCMO:

0.38%

YBCO /STO: 1.4%

X-ray diffraction and TEM

[8nm YBCO x 6nm LCMO]₂₀

SOFAR c- **AXIS** \perp **FILM PLANE ONLY**

PHYSICAL REVIEW B 69, 064505 (2004)

YBa₂Cu₃O₇/ LaNiO₃

YBa₂Cu₃O₇/ PrBa₂Cu₃O₇

BRAGG PEAK AT (1/2)th ORDER IN Y_{.6}Pr_{.4}Ba₂Cu₃O₇/ LCMO SUPERLATTICES

MULTIFERROICS

S. Soltan, J. Albrecht, H.-U.H. PRB 70 (2004) 144517

Technique

C. Bernhard et al unpublished

SUCCESSFUL MODELS "DEAD" LAYER MODEL

Region with **no** net magnetic moment in LCMO

Due to

- * interfacial strain
- * charge transfer

COMPARISON OF EXPERIMENT AND MODEL

BOTH MODELS CAN MIMICK THE EXPERI-MENTAL RESULTS !!

GENERALLY: FM / AFM INTERFACE CAUSES EXCHANGE BIAS EFFECTS

EXCHANGE BIAS FM/AFM INTERFACE

ANTIFERROMAGNETIC COM-PONENT OF THE MAGNETI-ZATION PROFILE AT THE YBCO / LCMO INTERFACE

H.-U. H., S. Soltan, J. Albrecht et al. to be published (2007)

N. Haberkorn et al. APL 84 (2004) 3927

ONCE IS NEVER TWICE IS EVER

O. I. LEBEDEV October 2007

Occupancy of Cu d-orbitals at the LCMO-YBCO interface as a function of Mn hole on-site energy, as predicted by the exact diagonalization calculations.

J. Chakhalian ,J.W. Freeland, H.-U. H., G. Cristiani,G. Khaliullin, M. van Veenendaal, and B. Keimer Science 2007

assume bulk orbital occupancy is maintained at interface

interface

→ antiferromagnetic coupling, as observed

J.Chakhalian, J. Freeland, H.-U. H. et al. Nature Physics 2(2006) 244

Proximity effect between spin singlet and FM

F.S. Bergeret, Phys. Rev. B 69, 174504 (2004).

HRTEM YBCO /LCMO

INTERFACE PROPERTIES DOMINATE "BULK" PROPERTIES

 $\zeta_{\rm FM} = (\mathbf{D}_{\rm FM} / \mathbf{J})^{1/2}$

SELF - INJECTION FROM FM SIDE

$$\Delta_{qp}/\Delta(0) = 1 - 2n_{qp} / 4N(0) \Delta(0)$$

RECENT RESULTS

EMBEDDED INTO A GENERAL FRAME

