

Exploration of the Driplines at the NSCL

New Isotopes at the NSCL 2007/8

National Superconducting Cyclotron Laboratory

MICHIGAN STATE MICHIGAN MICHIGAN MICHIGAN MICHIGAN MICHIGAN MICHIG

The Coupled Cyclotron Facility user group has 683 registered users

46 Undergraduate students

57 Graduate students

13 Postdocs

30 Faculty

Coupled Cyclotron Facility

L MICHIGAN SIATEMICHIGAN SIATEMICHICHIGAN SIATEMICHIGAN SIATEMICHIGAN SIATEMICHIGAN SIATEMICHICHIGAN SIATEMICHICHIGAN SIATEMICHICHI SIATEMICHICHI SIATEMICHICHI SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICHICHIGAN SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICHI SIATEMICH

Experimental Areas

Isotone Contamination Along the Proton Dripline

L MICHIGAN STATE MICHIGAN STATE

First Observation of ⁶⁰Ge and ⁶⁴Se

Purification of Proton-Rich Beam

UNIVERSITYINIVERSITYINIVER

- Low momentum exponential tails:
 - Proton-rich fragments have lower rigidity
 - Tails of fragments closer to stability overlap with fragments of interest
- Fragment separator
 - Selection provided by the achromatic wedge insufficient
 - Additional filtering needed

Momentum distributions of the transmitted fragments at the exit of the A1900

------ rf fragment separator

rf-Separator

MICHIGAN STATE MICHIG

rf system:

> 18 to 28 MHz

➤ 100 kV

> gap: 5 cm

length: 1.5 m

> power: 6 to 14 kW

Characteristics & Performance

Production of N=Z Isotopes

First observation of ⁹⁶Cd

120 MeV/u ¹¹²Sn, 10 pnA 195 mg/cm² Be target 1% momentum acceptance

D. Bazin, A. Becerril Reyes et al.

Competition from GSI

M.Górska, T.Faestermann, K.Eppinger, **C.Hinke**, et al. (Rising Collaboration) kft.umcs.lublin.pl/wfj/transp/2008/Gorska/Kazimierz08_gorska.ppt

In-Flight Fission

Neutron-Rich Isotopes

Observation of ¹²⁵Pd

A - 3Q

C.M. Folden III et al. (MSU, RIKEN, OSU, ANL, TAMU)

Competition from RIKEN

Identification of New Isotopes ¹²⁵Pd and ¹²⁶Pd Produced by In-Flight Fission of 345 MeV/nucleon ²³⁸U: First Results from the RIKEN RI Beam Factory

T. Onishi et al., J. Phys. Soc. Japan 77 (2008) 083201

Quest for 40Mg

L <u>michigan siatemichigan siatemichigan siatemichigan siatemichigan siatemichigan siatemichigan siatemichigan s</u> Lintversityuniversityuniversityuniversityuniversityuniversityuniversityuniversityuniversityuniversityuniversity

H. Sakurai et al., PLB 448 (1999) 180

M. Notani et al., PLB 542 (2002) 49

S.M. Lukyanov et al., JPG 28 (2002) L41

Systematic Study

First Observation of 44Si

L MICHIGAN STATE MICHIGAN STATE

O. Tarasov et al., PRC 75 (2007) 064613

Two-Separator Method

First Observation of ⁴⁰Mg

T. Baumann et al., Nature 449 (2007) 1022

Dripline Extends Further than Believed

L MICHIGAN SIAIEMICHIGAN SIAIEMICHICHIGAN SIAIEMICHIGAN SI

One Proton Makes a Huge Difference!!

Going Beyond the Dripline

T MICHIGAN STATE MICHIGAN STATE

Search for the first excited state in ²⁴O

M. Stanoiu, et al. PRC 69, 034312 (2004)

Exploring New Shell Structures

MoNA – Sweeper Setup

T MICHIGAN STATE MICHIGAN STATE

Invariant Mass Spectroscopy:

$$E_{\text{decay}} = \sqrt{m_{\text{f}}^2 + m_{\text{n}}^2 + 2[E_{\text{f}}E_{\text{n}} - p_{\text{f}}p_{\text{n}}\cos(\Theta_{\text{open}})]} - m_{\text{f}} - m_{\text{n}}$$

vault shielding

Two-Proton Knockout to ^{23,24}O

0m (26m; 22.24m) xr

⁹Be(²⁶Ne, ^{23,24}O)X

Z - Identification

Isotope - Identification

Decay Energy Spectra

Particle and Hole States in ²³O

One-Proton Knockout to ^{24,25}O

N = 16 Shell Gap

Continuum Coupled Shell Model

K. Tsukiyama, T. Otsuka and R. Fujimoto, subm. to Phys. Rev. Lett.

Spectroscopy of Neutron-Rich Oxygen Isotopes

Reaching the Driplines for Heavier Nuclei

Neutrons

FRIB at MSU: Isotope Science Facility

MICHIGAN STATE MICHIG

www.nscl.msu.edu/isf/

ReA3: Reaccelerated Rare Isotope Beams

Re-acceleration (0.3-3 MeV/u) by 2010

- (Upgrade planned to 12 MeV/u):
 - ➤ Momentum compression
 - ➤ Mass analyzer and beam transport
 - ➤ EBIT and q/A separator
 - ➤ Superconducting RF linac

Reaccelerator

- LEBT with multi-harmonic buncher
- ➤ Radio frequency quadrupole (RFQ)
- ➤ Superconducting linac
 - > 80 MHz $\lambda/4$ resonators $\beta_{opt} = 0.041$ and $\beta_{opt} = 0.085$
 - Superconducting solenoids for focusing
- > HEBT with rebuncher

New Building Addition

L UNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERSITYUNIVERS

New NSCL

Experimental area for reaccelerated beams

New Office Wing

Facility for Rare Isotope Beams

MICHIGAN STATE MICHIG

- ➤ Minimum technical specifications:
 - ➤ 200 MeV/u, 400 kW superconducting heavy-ion driver linac
 - Fragmentation of fast heavy-ion beams combined with gas stopping and reacceleration
- > TPC < \$550M then-year
- ➤ Anticipated notice of selection by end of December 2008
- ➤ "Hypothetical assumptions" in FOA
 - \triangleright R&D, conceptual design \ge FY09
 - \triangleright Construction \ge FY13, five years
 - \triangleright Pre-operations \ge FY16

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

U. S. Department of Energy

Office of Nuclear Physics

Facility for Rare Isotope Beams
Funding Opportunity Number: DE-PS02-08ER41838
Announcement Type: Initial
CFDA Number: 81.049

Issue Date:

05/20/2008

Letter of Intent Due Date:

Not Applicable

Pre-Application Due Date:

Not Applicable

Application Due Date:

07/21/2008

Acknowledgements

MICHIGAN STATE MICHIG

⁹⁶Cd: A. Becerril, D. Bazin, et al.

125Pd: C.M. Folden, B. M. Sherrill, et al.

⁴⁰Mg: T. Baumann, O. Tarasov, et al.

^{23,24,25}O: A. Schiller, N. Frank, C.R. Hoffman, MoNA Coll., et al.

The MoNA Collaboration:

