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o IBS in charged particle beams causes small changes of the colliding particles momenta by addition of 
multiple random small-angle scattering events, leading to: 
1. A relaxation to a thermal (energy) equilibrium via reallocation of the whole beam phase volume 

between the 3 transverse and longitudinal beam phase volumes (emittances). 
2. A continuous diffusion growth of the global beam phase volume without equilibrium, and 

reduction of the beam lifetime when the particles hit the aperture.
o Touschek effect is the particle losses due to single collision events at large scattering angles where only 

the energy transfer from transverse to longitudinal planes is examined (no particle redistribution done).
o IBS simulation consists to iteratively compute the particle momentum variation by coulomb scattering 

with the other particles of the beam and find the growth rates for the 3 degrees of freedom.
o IBS theory was later extended to include:

• Amplitude & dispersion derivatives and lattice parameter variations around the lattice.
• Horizontal-vertical betatron linear coupling.

06/11/2015

Prologue
Intrabeam Scattering (IBS) is a multiple Coulomb scattering of charged particle beams

(alternatively IBS is a diffusion process in all 3 transverse & longitudinal beam dimensions) 
ref. [1,3,7,8,15] & ref. [C,I,J]
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IBS and Touschek effect are distinctive facets of 
Coulomb scattering event inside particle beams
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Prologue
IBS in week focusing or smooth ring lattices can be related with scattering of gas molecules in a 
closed box, where the walls mimic the quadrupole focusing forces and the RF voltage keep the 
particles together. The scattering of the molecules leads to the Maxwell-Boltzmann distribution of 
the 3 velocity components (𝑣𝑥 , 𝑣𝑦, 𝑣𝑠) in which 𝑚 is the molecule mass, 𝑇 the temperature, 𝑘 the

Boltzmann's constant (𝑓𝑑𝒗 is normalized to unity):

The difference between IBS and gaz molecule scattering in a box is due to the ring orbit curvature: 
o Curvature yields a dispersion so that a sudden change of energy will change the betatron amplitudes 

and initiate a synchro-betatron oscillation coupling.
o Curvature also leads to the negative mass instability i.e. if a particle accelerates above transition it 

becomes slower and behaves as a particle with negative mass and thus an equilibrium of particles 
above transition energy can’t exist (transition energy 𝛾𝑡𝑚𝑐
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o Above transition the IBS effect is to increase the three bunch dimensions.
o Below transition an equilibrium particle distribution can exists (week focusing/smooth lattices).
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• Small angle multiple Coulomb scattering effect

• Redistribution of beam momenta

• Beam diffusion with impact on the beam quality (Brightness , 

luminosity, etc)

• Different approaches for the probability of scattering

• Classical Rutherford cross section 

• Quantum approach 

• Relativistic “Golden Rule” for the 2-body scattering process

• Several theoretical models and their approximations developed 

over the years

• Classical models of Piwinski (P) and Bjorken-Mtingwa (BM)

• High energy approximations Bane, CIMP, etc

• Integrals with analytic solutions
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The Intrabeam scattering effect
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Lagrangian and Hamiltonian (briefly)
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o We restrict to systems of 𝑁 particles with 3𝑁 degrees of freedom described via Cartesian 
coordinates 𝒓 = (𝒓1⋯𝒓𝑁), 𝒓𝑖 = 𝑥, 𝑦, 𝑧 𝑖, and 𝒗 ≡ ሶ𝒓 = ( ሶ𝒓1⋯ ሶ𝒓𝑁), ሶ𝒓𝑖 = ሶ𝑥, ሶ𝑦, ሶ𝑧 𝑖

o Assume the system exists in a conservative force field 𝑭𝑐 𝒓 with kinetic energy 𝑇(𝒓, ሶ𝒓) and 
potential 𝑉(𝒓) such as 𝑭𝑐 𝒓 = − 𝜵𝑟𝑉 𝒓 ≡ − 𝜕𝑉(𝒓)/𝜕𝒓. The Lagrangian is defined as (ref. [A,B]):

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒓
−
𝜕𝐿

𝜕𝒓
= 0

𝐻 𝒓, 𝒑, 𝑡 ≝ ሶ𝒓 ∙ 𝒑 − 𝐿 𝒓, ሶ𝒓, 𝑡 𝒑 ≝ 𝜕𝐿/𝜕 ሶ𝒓

𝐿 𝒓, ሶ𝒓, 𝑡 ≝ 𝑇 𝒓, ሶ𝒓, 𝑡 − 𝑉 𝒓

From which Hamilton’s equations are derived:

Lagrange’s equations stem from the variational principle:

𝒑: conjugate momentum to r

ሶ𝐻 = 0 if 𝐻 = 𝐻(𝒓, 𝒑) ⟶ 𝐻 = 𝑇 + 𝑉 = 𝐸 = constant energy
𝑑𝒓

𝑑𝑡
=
𝜕𝐻

𝜕𝒑

𝑑𝒑

𝑑𝑡
= −

𝜕𝐻

𝜕𝒓

𝛿𝐼 = න
𝑡1

𝑡2

𝐿(𝒓, ሶ𝒓, 𝑡) 𝑑𝑡 = 0
𝐿 is then recast in an 
Hamiltonian form 𝐻
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Lagrangian and Hamiltonian (briefly)
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If the total force 𝑭 acting on a system contains a conservative (Hamiltonian) part 𝑭𝑐 𝒓 and a non-
conservative (i.e. non-strictly-Hamiltonian) part 𝑭𝑛𝑐(𝒓, ሶ𝒓, 𝑡) representing friction, inelastic processes…
(𝑭 = −𝜵𝑟𝑉(𝒓) + 𝑭𝑛𝑐). The Lagrangian of the system is then written as: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒓
−
𝜕𝐿

𝜕𝒓
= 𝑭𝑛𝑐𝐿 𝒓, ሶ𝒓, 𝑡 ≝ 𝑇 𝒓, ሶ𝒓, 𝑡 − 𝑉 𝒓

From 𝐻 𝒓, 𝒑, 𝑡 = ሶ𝒓 ∙ 𝒑 − 𝐿 𝒓, ሶ𝒓, 𝑡 the (non-Hamiltonian) equations follow: 

since 𝑭𝑛𝑐≠−
𝜕෩𝑉

𝜕𝒓
≡ −𝛁𝒓 ෨𝑉

1)
𝜕𝐻

𝜕𝒑
= ሶ𝒓 −

𝜕𝐿

𝜕𝒑
= ሶ𝒓

2)
𝜕𝐻

𝜕𝒓
= −

𝜕𝐿

𝜕𝒓
= 𝑭𝑛𝑐 −

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒓
= 𝑭𝑛𝑐 −

𝑑𝒑

𝑑𝑡
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𝑑𝒓

𝑑𝑡
=
𝜕𝐻

𝜕𝒑

𝑑𝒑

𝑑𝑡
= −

𝜕𝐻

𝜕𝒓
+ 𝑭𝑛𝑐
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Liouville equation

o 𝜞−space: 6N−dim phase space coordinates, a single point (microstate) represents N particles 

labelled by 3N positions 𝒓=(𝒓1⋯𝒓𝑁) and momenta 𝒑=(𝒑1⋯𝒑𝑁), 𝒓𝑖= 𝑥, 𝑦, 𝑧 𝑖 and 𝒑𝑖= 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 𝑖

o 𝐄𝐧𝐬𝐞𝐦𝐛𝐥𝐞:𝒩copies of a specific microstate (N particles) each copy described by a different 
representative point in 𝛤−space (𝒩≠𝑁)

o 𝒅𝓝 𝒓, 𝒑, 𝒕 : number of microstates in the volume element 𝑑𝛤=ς𝑖=1
𝑁 𝑑𝒓𝑖𝑑𝒑𝑖 about any

coordinate values 𝒓, 𝒑 at time 𝑡
o 𝝆 𝒓, 𝒑, 𝒕 : density of representative microstates (“coarse-graining” density 𝜌(𝑟,𝑝,𝑡) is obtained by 

disregarding variation of 𝜌 below small resolution in 𝛤-space) ref. [1] & ref. [B-D]

06/11/2015

𝜌 𝒓, 𝒑, 𝑡 𝒅𝜞 = lim
𝒩→∞

𝑑𝒩 𝒓, 𝒑, 𝑡

𝒩
Formal density definition

Coarse-graining density 𝜌 𝒓, 𝒑, 𝑡 Δ𝜞 =
Δ𝒩 𝒓, 𝒑, 𝑡

𝒩
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Liouville equation

o A microstate of N particles with coordinates 𝒓, 𝒑 = 𝒓𝑖 , 𝒑𝑖 𝑖=1⋯𝑁 at time 𝑡 will be found at 𝑡+𝛿𝑡
with new coordinates 𝒓𝑖

′, 𝒑𝑖
′
𝑖=1⋯𝑁= (𝒓𝑖+ ሶ𝒓𝑖 𝛿𝑡, 𝒑𝑖 + ሶ𝒑𝑖 𝛿𝑡+𝒪(𝛿𝑡

2)) 

o The microstate density 𝜌 𝒓, 𝒑, 𝑡 at time 𝑡 will become 𝜌(𝒓′, 𝒑′, 𝑡+𝛿𝑡) at 𝑡+𝛿𝑡
o The phase space volume 𝑑𝛤 𝑡 at 𝑡 will change into 𝑑𝛤 𝑡+𝛿𝑡 at 𝑡+𝛿𝑡
o 𝑑𝒩 𝒓′, 𝒑′, 𝑡+𝛿𝑡 = 𝑑𝒩 𝒓, 𝒑, 𝑡 because 𝒓(𝑡), 𝒑(𝑡) follow Hamilton’s equations for 

(conservative forces) and thus no trajectories cross (do not escape the 6N-1 dim surface 𝐶(𝑡)
enclosing the microstates, 𝐶(𝑡) being itself a microstate !)

06/11/2015

𝜌(𝒓′, 𝒑′, 𝑡+𝛿𝑡)න
in 𝐶(𝑡+𝛿𝑡)

𝑑𝛤 𝑡+𝛿𝑡 = 𝜌(𝒓, 𝒑, 𝑡)න
in 𝐶(𝑡)

𝑑𝛤 𝑡

The relation between 𝑑𝛤′≝𝑑𝛤 𝑡+𝛿𝑡 with border 𝐶′≝𝐶(𝑡+𝛿𝑡) and 𝑑𝛤≝𝑑𝛤 𝑡 , border 𝐶≝𝐶 𝑡 is

Δ𝒩 𝒓, 𝒑, 𝑡 + 𝛿𝑡
= Δ𝒩 𝒓, 𝒑, 𝑡

න
in 𝐶′

𝑑𝛤′= 𝐽 න
in 𝐶

𝑑𝛤 𝐽 =
𝜕(𝒓𝑖

′ , 𝒑𝑖
′)

𝜕(𝒓𝑖 , 𝒑𝑖)
(3𝑁×3𝑁 Jacobian) ቋ

𝒓𝑖= 𝑥, 𝑦, 𝑧 𝑖

𝒑𝑖= 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 𝑖

𝑖=1⋯𝑁

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering
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Liouville equation
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Using 𝒓𝑖
′ , 𝒑𝑖

′ = (𝒓𝑖+ ሶ𝒓𝑖 𝛿𝑡, 𝒑𝑖 + ሶ𝒑𝑖 𝛿𝑡) and the Hamilton’s equations the determinant det 𝐽 of 
the Jacobian matrix writes (1st order)

det 𝐽 =

𝜕𝑟1
𝜕𝑟1

+
𝜕 ሶ𝑟1
𝜕𝑟1

𝛿𝑡 ⋯
𝜕𝑝𝑁
𝜕𝑟1

+
𝜕 ሶ𝑝𝑁
𝜕𝑟1

𝛿𝑡

⋮ ⋱ ⋮
𝜕𝑟1
𝜕𝑝𝑁

+
𝜕 ሶ𝑟1
𝜕𝑝𝑁

𝛿𝑡 ⋯
𝜕𝑝3𝑁
𝜕𝑝𝑁

+
𝜕 ሶ𝑝3𝑁
𝜕𝑝𝑁

𝛿𝑡

=

1 +
𝜕 ሶ𝑟1
𝜕𝑟1

𝛿𝑡 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1 +
𝜕 ሶ𝑝𝑁
𝜕𝑝𝑁

𝛿𝑡

= 1 +

𝑖=1

𝑁
𝜕 ሶ𝑟𝑖
𝜕𝑟𝑖

+
𝜕 ሶ𝑝𝑖
𝜕𝑝𝑖

𝛿𝑡 + 𝒪(𝛿𝑡2) det 𝐽 = 1+𝒪 𝛿𝑡2

Liouville’s theorem stems from the conservation 
of the phase space volume in Γ−space

න
in 𝐶(𝑡+𝛿𝑡)

𝑑𝛤 𝑡+𝛿𝑡 = න
in 𝐶(𝑡)

𝑑𝛤 𝑡
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𝑑𝜌

𝑑𝑡
=
𝜕𝜌

𝜕𝑡
+

𝑖=1

3𝑁
𝜕𝜌

𝜕𝑟𝑖
ሶ𝑟𝑖 +

𝜕𝜌

𝜕𝑝𝑖
ሶ𝑝𝑖 = 0

𝜕𝜌

𝜕𝑡
+ ሶ𝒓 ∙ 𝛁𝑟𝜌 + ሶ𝒑 ∙ 𝛁𝑝𝜌 = 𝟎

𝜌,𝐻 ≝

𝑖=1

3𝑁
𝜕𝜌

𝜕𝑟𝑖

𝜕𝐻

𝜕𝑝𝑖
−
𝜕𝜌

𝜕𝑝𝑖

𝜕𝐻

𝜕𝑟𝑖

𝜕𝜌

𝜕𝑡
+ 𝜌,𝐻 = 0
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Liouville equation
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𝜌(𝒓′, 𝒑′, 𝑡 + 𝛿𝑡) = 𝜌(𝒓, 𝒑, 𝑡)

Equivalently 𝜌 writes in differential form using the Hamilton’s equations and Poisson bracket:

Liouville’s
formula

Liouville’s theorem
The microstate density 𝜌(𝒓, 𝒑, 𝑡) in Γ−space behaves like an incompressible fluid

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑑𝜌(𝒓, 𝒑, 𝑡)

𝑑𝑡
= 0

Liouville’s
theorem
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Liouville equation
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Consider the (non-strictly-Hamiltonian) equations of motion for non-conservative forces 𝑭𝑛𝑐: 

𝜕 ሶ𝑟𝑖
𝜕𝑟𝑖

+
𝜕 ሶ𝑝𝑖
𝜕𝑝𝑖

=
𝜕𝐹𝑖

𝑛𝑐

𝜕𝑝𝑖

න
in 𝐶(𝑡+𝛿𝑡)

𝑑𝛤 𝑡 + 𝛿𝑡 = 1 + 𝛿𝑡

𝑖=1

𝑁
𝜕𝐹𝑖

𝑛𝑐

𝜕𝑝𝑖
න
in 𝐶(𝑡)

𝑑𝛤 𝑡

Liouville’s theorem “violated” !?: incompressibility condition of 𝜌(𝒓, 𝒑, 𝑡) not satisfied i.e.

𝜌(𝒓′, 𝒑′, 𝑡 + 𝛿𝑡) = 1 + 𝛿𝑡 𝛁𝑝 ∙ 𝑭
𝑛𝑐 𝜌(𝒓, 𝒑, 𝑡)

Written in differential form this lead to the equivalent results:

𝑑𝜌

𝑑𝑡
= 𝛁𝑝∙ 𝑭

𝑛𝑐

ሶ𝑟𝑖 =
𝜕𝐻

𝜕𝑝𝑖
ሶ𝑝𝑖 = −

𝜕𝐻

𝜕𝑟𝑖
+ 𝐹𝑖

𝑛𝑐 det 𝐽 = 1 +

𝑖=1

𝑁
𝜕𝐹𝑖

𝑛𝑐

𝜕𝑝𝑖
𝛿𝑡

𝜌(𝒓′, 𝒑′, 𝑡 + 𝛿𝑡) − 𝜌(𝒓, 𝒑, 𝑡)

𝛿𝑡
= 𝛁𝑝∙ 𝑭

𝑛𝑐

𝜕𝜌

𝜕𝑡
+ 𝜌,𝐻 = 𝛁𝑝∙ 𝑭

𝑛𝑐
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𝜕𝜌

𝜕𝑡
+ ሶ𝒓 ∙ 𝛁𝑟𝜌 + ሶ𝒑 ∙ 𝛁𝑝𝜌 = 𝛁𝑝∙ 𝑭

𝑛𝑐
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Liouville equation
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Microstate subset 𝑑𝒩 𝑟, 𝑝, 𝑡 inside the 
6N−dim volume 𝑑𝛤 𝑡 of border 𝐶 𝑡 at 𝑡 in 
Γ−space will occupy a distorted volume 
𝑑𝛤 𝑡+𝛿𝑡 of border 𝐶 𝑡+𝛿𝑡 at t+𝛿𝑡

Liouville (also called collisionless Boltzmann) equation 

o Detailed account of the density 𝜌(𝒓(𝒕), 𝒑(𝒕), 𝑡) would
require knowledge of 6𝑁 particle trajectories with initial 
conditions for all microstates of the sub-ensemble 𝑑𝒩
(~1023?!) in the (Γ−space) volume element 𝑑𝛤.

o Practically it would be more suitable to place the phase 
trajectories of the N particles in the same 6−dim phase
space 𝜇−space : a single point represents one particle 
labelled by 3 positions 𝒓= 𝑥, 𝑦, 𝑧 and 3 momenta 

𝒑= 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 .

o To reach this objective the 6N−dim microstate density 
𝜌 𝒓1, ⋯ 𝒓𝑁, 𝒑1, ⋯𝒑𝑁, 𝑡 must be reduced a 6−dim particle
density 𝑓1 𝒓, 𝒑, 𝑡 in 𝜇−space .

o This should be done via the BBGKY hierarchy framework 
to go from the N-particles (in Γ −space) to the N-times
1-particle 𝜇−space description (ref. [1,2] & ref. [C]).

𝑑𝛤(𝑡 +𝛿𝑡)

𝑥𝑖
𝑦𝑖
𝑧𝑖

=𝒓𝑖 𝑡

𝒑𝑖(𝑡) = 𝑝𝑥𝑖 , 𝑝𝑦𝑖 , 𝑝𝑧𝑖

C(𝑡 +𝛿𝑡)

C(𝑡)

𝑑𝛤(𝑡)

6N-dim 𝚪−space 

𝑑𝒩(𝑟,𝑝,𝑡) 
microstates

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering



13

Liouville equation
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o The full phase space density 𝜌 𝒓, 𝒑, 𝑡 contains too much information than needed to describe the 
equilibrium properties of particles (e.g. 1-particle density is enough to compute a gas pressure).

o The N-particle density 𝜌 𝒓1, 𝒑1, ⋯ 𝒓𝑁, 𝒑𝑁, 𝑡 in 6N−dim Γ−space is to be reduced to a single particle 
density 𝑓1 𝒓, 𝒑, 𝑡 in 6−dim 𝜇−space: the state of each particle being represented by a single point.

o 𝑓1 𝒓, 𝒑, 𝑡 /𝑁 refers to the expectancy of finding any one of the N particles at time 𝑡 with location 𝒓
and momentum 𝒑, computed from 𝜌 𝒓1, 𝒑1, ⋯ 𝒓𝑁, 𝒑𝑁, 𝑡 by means of the formulae:

𝑓1 𝒓, 𝒑, 𝑡 = 𝑁නෑ

𝑖=2

𝑁

𝑑𝒓𝑖𝑑𝒑𝑖 𝜌 𝒓, 𝒑, 𝒓2, 𝒑2⋯ , 𝒓𝑁, 𝒑𝑁, 𝑡

𝑓1 is normalized to 𝑁 and 𝜌 to 1

𝑓1 𝒓, 𝒑, 𝑡 = 
𝑖=1

𝑁

𝛿 (𝒓 − 𝒓𝑖)𝛿(𝒑 − 𝒑𝑖) ≡ න𝑑𝛤𝜌 𝒓, 𝒑, 𝑡 
𝑖=1

𝑁

𝛿 (𝒓 − 𝒓𝑖)𝛿(𝒑 − 𝒑𝑖)

with for any function 𝒪 𝒓, 𝒑 : 𝒪 = 𝑑𝛤 𝜌 𝒓, 𝒑, 𝑡 𝒪 𝒓, 𝒑 . Using the first pair of delta 

functions to compute one set of integrals we get, assuming a symmetric density when 
permuting particles: 
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For many aims the reduced function 𝑓1 governed by the BBGKY hierarchy (Bogoliubov, 
Born, Green, Kirkwood, Yvon) is all it is really needed to know about a 𝑁-particles system 

in the 6𝑁-dim Γ−space because it describes its density function in the 6-dim 𝜇−space. 

e. g. N=2: 𝑓1 𝒙 𝑑𝒙1𝑑𝒙2𝜌= 𝒙1, 𝒙2 𝛿 𝒙 − 𝒙1 +𝛿(𝒙 − 𝒙2) =

𝑑𝒙2𝜌 𝒙1=𝒙, 𝒙2 𝑑𝒙1𝜌+ 𝒙1, 𝒙2=𝒙 𝑑𝒙2𝜌2= 𝒙, 𝒙2



Liouville formula needs then to be adapted to Boltzmann 
collision equation when considering particle interactions 

14

Boltzmann collision equation
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Particle subset 𝑑𝑁 𝑟, 𝑝, 𝑡 inside 𝜇−space 
at t+𝛿𝑡 due to collisions in the time 𝛿𝑡

o As a result of collisions during the time interval 𝛿𝑡 particles 
that were inside the volume 𝑑𝛤= 𝑑𝒓𝑑𝒑 in the 6-dim 𝜇−space
may be removed from it and particles outside 𝑑𝛤 may end up 
inside it.

o The net gain or loss of particles as a result of collisions during 
𝛿𝑡 inside 𝑑𝛤 is denoted:

𝛿𝑓1 𝒓1, 𝒑1, 𝑡

𝛿𝑡
coll

𝑑𝒓𝑑𝒑𝛿𝑡

where 𝛿𝑓1/𝛿𝑡 coll means the rate of change of 𝑓1. Hence the   
….’Liouville’equation turns into the collision Boltzmann equation

𝑥𝑖
𝑦𝑖
𝑧𝑖

=𝒓𝑖 𝑡
6-dim 𝝁−space

𝒗(𝑡) = 𝑣𝑥, 𝑣𝑦, 𝑣𝑧

𝑥
𝑦
𝑧

=𝑟 𝑡

𝑑𝛤(𝑡)

𝑑𝛤(𝑡 +𝛿𝑡)

entering particle

leaving particle
𝑑𝑁(𝑟,𝑝,𝑡) particles

𝜕𝜌

𝜕𝑡
+ ሶ𝒓 ∙ 𝛁𝑟𝜌 + ሶ𝒑 ∙ 𝛁𝑝𝜌 =

𝛿𝑓1
𝛿𝑡

coll

≡ 𝛁𝑝∙ 𝑭
𝑛𝑐=

𝜕

𝜕𝒓
∙ 𝑭𝑛𝑐

non conservative force field
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Heuristic assumptions are made to «derive» the Boltzmann collision equation: 

o 𝑓1 does not vary visibly over the distance of interparticle force range and over 
the time scale of the interaction.

o Disregard external force effects on the collision cross-section size.

o Consider only binary collisions.

o “Molecular chaos” assumption: the interacting particle momenta (velocities), 
before collision, are assumed to be uncorrelated, i.e. 

• the joint probability 𝑓2 𝒓, 𝒑1, 𝒓, 𝒑2, 𝑡 of having, at position 𝒓 and time 𝑡, particles 1 
& 2 of momenta 𝒑1 and 𝒑2 is equal to 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡 (supposing that 

collisions are local in space so that the 2 particles sit at the same point).

o Generally the joint probability density would be equal to 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡 1+Κ2 𝒓, 𝒑1, 𝒑2, 𝑡

where Κ2 𝒓, 𝒑1, 𝒑2, 𝑡 is a correlation function. 
o To by-pass the molecular chaos approximation the alternative is to work with the equations of the 

BBGKY hierarchy (Bogoliubov, Born, Green, Kirkwood, Yvon) ref. [B,C,E,F].

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering
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Let’s start with an Hamiltonian 𝐻(𝒓, 𝒑) with no interacting collision potential between particle pairs
(e.g. Coulomb scattering potential). This Hamiltonian will just contain: 
o Particle kinetic energy (for non relativistic charged particles)
o External potential Φ(𝒓) (e.g. electromagnetic field for charged particle beam)

𝐻 𝒓, 𝒑 =

𝑖=1

𝑁
𝑝𝑖
2

2𝑚
+Φ(𝒓𝑖)

From Liouville’s formula in terms of Poisson bracket and 
replacing the 6N−dim density 𝜌 in Γ−space by the 6−dim
density 𝑓1 in 𝜇−space we get: 

𝐻, 𝑓1 =
𝜕𝐻

𝜕𝒓1

𝜕𝑓1
𝜕𝒑1

−
𝜕𝐻

𝜕𝒑1

𝜕𝑓1
𝜕𝒓1

=
𝜕Φ

𝜕𝒓1

𝜕𝑓1
𝜕𝒑1

−
𝒑1
𝑚

𝜕𝑓1
𝜕𝒓1

𝜕𝑓1
𝜕𝑡

+ 𝑓1, 𝐻 = 𝟎

The external force 𝑭 = 𝑚𝒂 (e.g. in a plasma) includes the Lorentz force ሶ𝒑 = 𝑒 𝑬 + ሶ𝒓 × 𝑩 due to 
externally applied fields.

collisionless Boltzmann
equation 
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𝜕𝑓1
𝜕𝑡

−
𝜕Φ

𝜕𝒓1

𝜕𝑓1
𝜕𝒑1

+
𝒑

𝑚

𝜕𝑓1
𝜕𝒓1

= 0
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Boltzmann collision equation
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o For 𝛿ℛ−: particles are shared in 2 groups, the 1st of momenta in 
the interval 𝜕𝒑 about 𝒑𝟏 and the 2nd of all other momenta 
denoted 𝒑𝟐, the particles ejected from 𝜕𝒓𝜕𝒑 are the number of 
collisions that the 𝒑𝟏’s have with all other 𝒑𝟐’s (not in 1st group) in 
𝛿𝑡. To compute 𝛿ℛ− all collisions between pairs of particles that 
eject one of them out of the interval 𝜕𝒑 about 𝒑𝟏 are considered:
• One particle is in 𝜕𝒓𝜕𝒑 near (𝒓𝟏, 𝒑𝟏) the other in 𝜕𝒓𝟐𝜕𝒑𝟐 near 

(𝒓𝟐, 𝒑𝟐)
• The 𝒑𝟐’s in 𝜕𝒓𝟐 suffer a collision with the 𝒑𝟏’s in 𝜕𝒓 in time 𝛿𝑡.

Collision terms: 
The interaction result is characterized by the net rate at which collisions increase or decrease the particle 
number entering the 6-dim phase-space slice 𝜕𝒓𝜕𝒑 in time 𝛿𝑡 (named 𝛿ℛ) defined as:  𝛿ℛ=𝛿ℛ+−𝛿𝑅−
where 𝛿ℛ± are the particle number injected/ejected in 𝜕𝒓𝜕𝒑 by collisions in 𝛿𝑡

o For 𝛿ℛ+:  consider all pair-particle collisions that send one 
particle into the momentum interval 𝜕𝒑 about 𝒑𝟏 in time 𝛿𝑡
which is the inverse of the original collision (𝒑𝟏

′ , 𝒑𝟐
′ ) ⇄ (𝒑𝟏, 𝒑𝟐)

𝒑1 particle has momentum 
𝒑2 − 𝒑1 in 𝒑1 particle frame

3-dim volume element 
𝑑𝜙𝑏𝑑𝑏 𝒑2 − 𝒑1

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering
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Boltzmann collision equation
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The number of particles injected/ejected into 𝜕𝒓𝜕𝒑 by collisions in time 𝛿𝑡 are: 

𝛿ℛ− = න
(𝒓2, 𝒑2)

𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡 𝑑𝒓𝑑𝒑1𝑑𝒑2 𝛿ℛ+ = න
(𝒓𝟐
′ ,𝒓𝟐

′ )

𝑓1 𝒓′, 𝒑1
′ , 𝑡 𝑓1 𝒓′, 𝒑2

′ , 𝑡 𝑑𝒓′𝑑𝒑1
′ 𝑑𝒑2

′

𝛿ℛ− = න 𝑓1𝑑𝒑2 𝒑2 − 𝒑1 𝑏𝑑𝑏𝑑𝜙 𝑑3𝒓𝑑3𝒑1𝛿𝑡 𝛿ℛ+ = න 𝑓1𝑑𝒑2 𝒑2 − 𝒑1 𝑏𝑑𝑏𝑑𝜙 𝑑3𝒓𝑑3𝒑1𝛿𝑡

𝛿ℛ = න 𝑓1 𝒓′, 𝒑1
′ , 𝑡 𝑓1 𝒓′, 𝒑2

′ , 𝑡 − 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡 𝒑2 − 𝒑1 𝑑𝒓𝑑𝒑1𝑏𝑑𝑏𝑑𝜙

All 𝒑2 particles shown (see fig. above)  in the cylinder of height 𝒑2 − 𝒑1 𝛿𝑡 and base area 𝑏𝑑𝑏𝑑𝜙
suffer a collision with the 𝒑1 particle in time 𝛿𝑡 𝑑𝒓 = 𝒑2 − 𝒑1 𝛿𝑡𝑏𝑑𝑏𝑑𝜙 (idem for 𝒑1

′ , 𝒑2
′ ). Also 

since 𝑑3𝒓𝑑3𝒑 = 𝑑3𝒓′𝑑3𝒑′

From Liouville equation the net number of particles that enter the 6-dim phase element 𝑑𝒓𝑑𝒑 keeping 
on a particle trajectory during 𝛿𝑡 is zero. Likewise the collisionless Boltzmann equation writes: 

𝛿ℛLiouville ≡ 𝑑𝒓𝑑𝒑 𝛿𝑡
𝜕𝑓1
𝜕𝑡

−
𝜕Φ

𝜕𝒓1

𝜕𝑓1
𝜕𝒑1

+
𝒑

𝑚

𝜕𝑓1
𝜕𝒓1

= 0
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𝛿ℛ

𝑑𝒓𝑑𝒑1𝛿𝑡
= න 𝑓1 𝒓, 𝒑1

′ , 𝑡 𝑓1 𝒓, 𝒑2
′ , 𝑡 − 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡 𝒑2 − 𝒑1 𝑑𝒑2𝑏𝑑𝑏𝑑𝜙 ≡

𝛿𝑓1 𝒓, 𝒑1, 𝑡

𝛿𝑡
coll

Hence the above term 𝛿ℛ can be cast into the form:

o The quantity 𝑏𝑑𝜙𝑑𝑏 ≡ 𝑑𝜎 having dimensions of area can be written as 𝑑𝜎 = 𝑑𝜎/𝑑Ω 𝑑Ω in which
𝑑𝜎/𝑑Ω is the differential cross-section (see below). 

o Replacing 𝒑2 − 𝒑1 /𝑚 by the velocity 𝒗2 − 𝒗1 (non relativistic particles) the collision term writes:

Putting 𝛿𝑓1/𝛿𝑡 coll in the collisionless Boltzmann equation yields the Boltzmann collision equation: 
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𝜕

𝜕𝑡
−
𝜕Φ

𝜕𝒓1

𝜕

𝜕𝒑1
+
𝒑1
𝑚

𝜕

𝜕𝒓1
𝑓1=න𝑑𝒗2න𝑑Ω

𝑑𝜎

𝑑Ω
𝒗2 − 𝒗1 𝑓1 𝒓, 𝒑1

′ , 𝑡 𝑓1 𝒓, 𝒑2
′ , 𝑡 − 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡

𝛿𝑓1
𝛿𝑡

coll

= න𝑑𝒗2න𝑑Ω
𝑑𝜎

𝑑Ω
𝒗2 − 𝒗1 𝑓1 𝒓, 𝒑1

′ , 𝑡 𝑓1 𝒓, 𝒑2
′ , 𝑡 − 𝑓1 𝒓, 𝒑1, 𝑡 𝑓1 𝒓, 𝒑2, 𝑡



20

Boltzmann collision equation

06/11/2015

Kinematics of collisions:  
o A cylindrical polar coordinates is taken to do the above integral: the scattering angle 𝜃 refers to the 

𝑥-axis parallel to 𝒑2 − 𝒑1 (before 𝑥1), the perpendicular plane is parametrized by the 𝑦-axis parallel 
to the impact parameter 𝒃 (unit vector) and by the angle 𝜙, 𝑟𝑚 is the distance of closest approach.

o Non-relativistic collision of 2 particles of mass 𝑚
and momenta 𝒑1,2 = 𝑚𝒗1,2 seen from a frame in 
which one particle is at rest at 𝑥 = 0.

o The out-going momenta 𝒑1,2
′ are given from the 

conditions: 
1. Conserved momentum:  𝒑2

′ + 𝒑1
′ = 𝒑2 + 𝒑1

2. Conserved energy: 
𝒑2
′ 𝟐 + 𝒑1

′ 𝟐 = 𝒑2
𝟐 + 𝒑1

𝟐

𝒑2
′ − 𝒑1

′ = 𝒑2 − 𝒑1 Ω 𝜃, 𝜙

𝒑2
′ − 𝒑1

′ ≡ 𝒑2 − 𝒑1 (constant modulus)
where 𝛀(𝜃, 𝜙) is a solid angle unit vector

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering
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𝑑𝜴

o Differential cross-section: m2 (ref. [19] & ref. [B-D])

• This is the number of particles scattered per unit time, unit incident flux and oriented solid angle 𝛀 𝜃, 𝜙
the absolute value ⋯ comes because 𝜃 usually decreases when 𝑏 increases

• Geometrically the next figures show a scattering process with 𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜙 and 𝑑σ = 𝑏 𝑑𝑏𝑑𝜙 where
𝜃 depends on the interparticle force law, the relative momentum 𝒑2 − 𝒑1 and impact parameter 𝑏

o Rutherford scattering:

• Small 𝜃 yield large 𝑏 (𝜃min=0 → 𝑏max=∞)

𝑑σ/𝑑Ω = 𝑑𝑏/𝑑𝜃

21CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑑σ

𝑑Ω
=

𝑚𝑒2

4𝜋𝜖0 𝒑2 − 𝒑1
2

2
1

sin4 𝜃/2
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Equilibrium particle density
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o 𝐄𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦: At equilibrium the 1−particle density 𝑓1 𝒓, 𝒑 has no explicit time dependence:

o Maxwell-Boltzmann distribution: Similarly at equilibrium the collision integral vanishes: (ref. [C,D,F])

where the l.h.s. refers to momenta before collision the r.h.s. to the those after collision. 
The equality is satisfied by any additive invariant quantities during the collision, e.g.  

𝛼 and 𝛽 are constants, from which the Maxwell-Boltzmann velocity density (for Φ(𝒓) = 0) follows: 

𝜕𝑓1/𝜕𝑡 = 0 ⟶ 𝐻1, 𝑓1 = 0⟶ 𝑓1 = 𝑓1(𝐻1) with 𝐻1 𝒓, 𝒑 = 𝒑2/2𝑚 + Φ(𝒓)

𝑓1 𝒓, 𝒑1 𝑓1 𝒓, 𝒑2 = 𝑓1 𝒓, 𝒑1
′ 𝑓1 𝒓, 𝒑2

′ ln 𝑓1 𝒓, 𝒑1 + ln 𝑓1 𝒓, 𝒑2 = ln 𝑓1 𝒓, 𝒑1
′ + ln 𝑓1 𝒓, 𝒑2

′

ln 𝑓1 𝒓, 𝒑 = − 𝛽 𝒑2/2𝑚 +Φ(𝒓) 𝑓1 𝒓, 𝒑 = 𝛼𝑒−𝛽 𝒑2/2𝑚+Φ(𝒓)

For a gaz of 𝑁 particles in a box volume 𝑉 for 𝒑 = 𝑚𝒗, 𝒖 an overall drift, 𝑘 the Boltzmann constant 
(the integral of 𝑓1 over the 3-dim box volume 𝑉 is equal to 𝑁 since 𝑓1𝑑𝒑 must be normalized to 𝑁): 
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𝑓1 𝒗 =
𝑁

𝑉

𝛽𝑚

2𝜋

3/2

𝑒−𝛽𝑚 𝒗−𝒖 2/2
𝛽=1/𝑘𝑇

𝑓1 𝒗 =
𝑁

𝑉

1

2𝜋𝑘𝑇/𝑚 3/2
𝑒−𝑚 𝒗−𝒖 2/(2𝑘𝑇)



 Part 2: Intrabeam scattering

 Core IBS model

 IBS analytical model

 Original Piwinski model

 Bjorken-Mtingwa model
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 Part 3: Applications

 IBS & LHC (7 TeV)

 IBS & ELENA (100 keV)

 Epilogue

 Appendices: Feynman rules
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• Theoretical models calculate the IBS growth rates:

• Complicated integrals averaged around the rings

• Depend on optics and beam properties

 They have been well benchmarked for hadron machines

 For lepton machines the work is in progress 

 Need to benchmark the IBS effect in the presence of SR and QE

 Studies and publications from: ATF(2001), CesrTA, SLS, SPEAR3 

 Main drawbacks:

▫ Gaussian beams assumed

▫ Betatron coupling not trivial to be included

▫ Impact on damping process (especially in strong IBS regimes)?

 Tracking codes SIRE (A. Vivoli) and CMAD-IBStrack (M. Pivi, T. Demma)

• Based on the classical Rutherford cross section

The Intrabeam scattering effect

),,,,(
1

snynxn

snynxni

opticsf
N

T
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o In conformity with Piwinski’s approach (refs. [3,5]), calculations of beam size growth/decrease rates
caused by IBS effect are sketched out to give a sound idea of the process. 

o The kinematics & dynamics of charged particle pair collisions is delineated over the following steps: 

7. Calculate the growth/fall rates of mean betatron oscillation amplitudes & momentum spread in a bunch.

1. Transform the momenta of the colliding particles from the LAB to the centre of mass (CM) frame

2. Calculate the changes in momenta due to an elastic collision.

3. Transform of the momenta back to the LAB frame.

4. Relate the changes in momenta to changes in transverse & longitudinal emittances.

6. Average over the particle momentum & position distributions in a bunch.

5. Average over the scattering angle distribution using the classical Rutherford cross-section.

Transverse & longitudinal beam growth rate estimate:  A strategy in 7 steps

Core IBS model Continuation… from Part 1
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Core IBS model
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According to Piwinski (ref. [3,5]) the relative longitudinal and transverse momentum changes after a two 
particles (labelled 1, 2) collision can be cast (after some hard-working task) into the form:

𝜃=
𝑝𝑥1 − 𝑝𝑥2

𝑝
≡𝑥1

′ − 𝑥2
′ 𝜁=

𝑝𝑧1 − 𝑝𝑧2
𝑝

≡𝑧1
′ − 𝑧2

′

𝛾𝜉=
𝑝1 − 𝑝2

𝑝
2𝛼≡𝛼1+𝛼2= 𝜃2+𝜍2

o 𝛿𝒑1,2 are the back momenta Lorentz transform from momenta in ad-hoc CM frame (ෝ𝒖, ෝ𝒗, ෝ𝒘)-axes to the LAB

frame (ො𝒔, ෝ𝒙, ො𝒛)-axes (𝑝1,2= 𝒑1,2 , 𝒑 is the mean particle momentum, ො𝒔 =unit vector, 𝛾 the Lorentz factor, ത𝜓 & ത𝜙

the axial & azimuthal collision angles in CM, 2𝛼 ≡ 𝛼1+𝛼2 the angle between particle momenta in LAB) (ref. [K])

o 𝒑1,2
′ are the rotated momenta after collision with angles ത𝜓 & ത𝜙 (expressed in LAB frame). 

o 𝒑1,2 are the momenta before collision written as  𝒑1,2=𝑝𝑠1,2(1, 𝑥1,2
′ , 𝑧1,2

′ ) via (ො𝒔, ෝ𝒙, ො𝒛)-coordinates in LAB frame 

and 𝒑1,2=𝑝𝑠1,2(cos 𝛼1,2, 0, ±sin 𝛼1,2) via (ෝ𝒖, ෝ𝒗, ෝ𝒘)-coordinates in CM frame (see next Fig.)

𝛿𝒑1,2=𝒑1,2
′ − 𝒑1,2=

d
ef

in
in

g

Strategy step 1-3: 
momenta kinematics
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𝛿𝑝𝑠
𝑝

≈
𝛿𝑝

𝑝
=
𝛾

2
2𝛼 cos ത𝜙 sin ത𝜓 + 𝜉 cos ത𝜓 − 1

2
𝛿𝑝𝑥
𝑝

= 𝜁 1 +
𝜉2

4𝛼2
sin ത𝜙 −

𝜉𝜃

2𝛼
cos ത𝜙 sin ത𝜓 + 𝜃 cos ത𝜓 − 1

2
𝛿𝑝𝑧
𝑝

= 𝜃 1 +
𝜉2

4𝛼2
sin ത𝜙 −

𝜉𝜁

2𝛼
cos ത𝜙 sin ത𝜓 + 𝜁 cos ത𝜓 − 1

2.1
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o Particle momenta before collision (ഥ𝒑1, ഥ𝒑2) and after
(ഥ𝒑1

′ , ഥ𝒑2
′ ) in the CM frame (ഥ𝒖, ഥ𝒗, ഥ𝒘) (ഥ𝒖 is the Lorentz-

transformed longitudinal axis from LAB to CM frame)

o Particle momenta 𝒑1,2 before collision in LAB frames (ො𝒔, ෝ𝒙, ො𝒛)
o Relation between initial 𝒑1,2 and final 𝒑1,2

′ is quite complex

o The overlaid (ෝ𝒖, ෝ𝒗, ෝ𝒘) frame is aligned on CM particle motion

The change of particle momentum after collision leads to a parallel change of the particle invariants
(i.e. longitudinal & transverse emittances) which result supposing that transverse particle positions 
are not altered during the interaction time (assumed to be short enough).

LAB

CM

CM

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

Strategy step 1-3: 
momenta kinematics Core IBS model
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o The radial particle movement from the closed orbit is the sum of betatron & momentum deviation.
o The invariants are the beam emittances 𝜀𝑥,𝑧 & 𝐻 (for bunched beams) in which 𝛼𝑥,𝑧, 𝛽𝑥,𝑧 , 𝛾𝑥,𝑧 are the 

Twiss parameters, with 𝛽𝑥,𝑧𝛾𝑥,𝑧−𝛼𝑥,𝑧
2 =1, 2𝛼𝑥,𝑧=−𝛽𝑥,𝑧

′ , Ω is the synchrotron frequency:

The change 𝛿𝜀𝑥,𝑧 of 𝜀𝑥,𝑧 works out as (swap 𝑥 with 𝑧 for 𝛿𝜀𝑧):

Assuming there is no vertical dispersion i.e. 𝐷𝑧=𝐷𝑧
′=0 and that 𝑥1,2 & 𝑧1,2 stay constant during the short 

collision time so that only 𝑥1,2
′ & 𝑧1,2

′ vary with the momentum change. Since 𝛿(∆𝑝/𝑝)=𝛿𝑝/𝑝 as the 
mean momentum 𝑝= 𝒑 is constant without acceleration, the variations 𝛿𝑥𝛽, 𝛿𝑥𝛽

′ , 𝛿𝑧𝛽
′ can be written in 

term of betatron amplitudes as follows: 
(e.g.  𝛿𝑥=𝛿𝑥𝛽+𝐷𝑥∆𝑝/𝑝=𝛿𝑥𝛽+𝐷𝑥𝛿 ∆𝑝/𝑝 =𝛿𝑥𝛽+𝐷𝑥𝛿𝑝/𝑝≡0 ⟹ 𝛿𝑥𝛽=−𝐷𝑥𝛿𝑝/𝑝)

Strategy step 4: 
emittance changes
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𝑥 = 𝑥𝛽 + 𝐷𝑥∆𝑝/𝑝 𝑧 = 𝑧𝛽 𝜀𝑥 = 𝛾𝑥𝑥𝛽
2 + 2𝛼𝑥𝑥𝛽𝑥𝛽

′ + 𝛽𝑥𝑥𝛽
′2

𝑥′ ≡ 𝑝𝑥/𝑝 = 𝑥𝛽
′ − 𝐷𝑥

′∆𝑝/𝑝 𝑧′ ≡ 𝑝𝑧/𝑝 = 𝑧𝛽
′

𝐻 = ∆𝑝/𝑝 2 + Ω−2 𝑑
𝑑𝑡

∆𝑝/𝑝
2

𝛿𝜀𝑥 = 𝛾𝑥(2𝑥𝛽𝛿𝑥𝛽 + 𝛿𝑥𝛽
2) + 2𝛼𝑥 𝑥𝛽

′ 𝛿𝑥𝛽 + 𝑥𝛽𝛿𝑥𝛽
′ + 𝛿𝑥𝛽𝛿𝑥𝛽

′ + 𝛽𝑥 2𝑥𝛽
′ 𝛿𝑥𝛽

′ + 𝛿𝑥𝛽
′2

Core IBS model
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The changes 𝛿𝜀𝑥,𝑧 & 𝛿𝐻 of 𝜀𝑥,𝑧 & 𝐻 after collision can be rewritten (in which ෩𝐷𝑥=𝛼𝑥𝐷𝑥+𝛽𝑥𝐷𝑥
′ and by 

disregarding the time variation of Ω during the collision) as:

o For a scattering process, Piwinski introduced the derivatives 𝑑 𝜀𝑥1,𝑧2 /𝑑 ҧ𝑡, i.e. the mean emittance 

change of a 1st particle by averaging with all betatron angles (or momentum spread) of a 2nd particle. 
o Further averages over positions, betatron angles (or momentum deviations) of the 1st particle must 

be done to get the total mean emittance change of all particles: i.e. integrate over the phase space 
with the probability density law 𝑃 ( ത𝑃) in the LAB & CM frames. In formula this writes as follows:

Strategy step 5: 
scattering angle averages

The phase space volume variation is 
got by averaging the change of the 
particle invariant over the collisions.
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𝛿𝜀𝑥
𝛽𝑥

= −
2

𝛽𝑥
𝑥𝛽 𝛾𝑥𝐷𝑥+𝛼𝑥𝐷𝑥

′ +𝑥𝛽
′ ෩𝐷𝑥

𝛿𝑝

𝑝
+
𝐷𝑥
2+෩𝐷𝑥

2

𝛽𝑥
2

𝛿𝑝

𝑝

2

+ 2 𝑥𝛽
′+

𝛼𝑥
𝛽𝑥

𝑥𝛽
𝛿𝑝𝑥
𝑝

+
𝛿𝑝𝑥
𝑝

2

−
2෩𝐷𝑥
𝛽𝑥

𝛿𝑝

𝑝

𝛿𝑝𝑥
𝑝

𝛿𝐻 = 2
∆𝑝

𝑝

𝛿𝑝

𝑝
+

𝛿𝑝

𝑝

2
𝛿𝜀𝑧
𝛽𝑧

= 2 𝑧𝛽
′+

𝛼𝑧
𝛽𝑧
𝑧𝛽
𝛿𝑝𝑧
𝑝

+
𝛿𝑝𝑧
𝑝

2

𝛿𝑥𝛽 = −𝐷𝑥𝛿𝑝/𝑝 𝛿𝑥𝛽
′ = 𝛿𝑝𝑥/𝑝 − 𝐷𝑥

′𝛿𝑝/𝑝 𝛿𝑧𝛽
′ = 𝛿𝑝𝑧/𝑝
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The small bracket 〈∙〉 denotes an average over all particles, the outer bracket means an average round 
the ring circumference, 𝑑 ത𝜎/𝑑ഥΩ is the Rutherford differential cross-section for the scattering into a 
solid angle element 𝑑ഥΩ( ത𝜙, ത𝜓) in the CM frame. The proper time intervals in CM & LAB frames are 𝑑 ҧ𝑡 & 
𝑑𝑡 with 𝑑𝑡=𝛾𝑑 ҧ𝑡, 2𝑐 ҧ𝛽 is the relative velocity of two colliding particles with ഥ𝒗1+ഥ𝒗2=0 in CM frame. 𝑃 is 
defined as a probability density product using 12 variables and can be expressed in LAB into the form 
(defining for short 𝜂1,2 ≝ Δ𝑝1,2/𝑝1,2) (ref. [3,15]): 

Among the 12 variables 3 are dependent since during the short collision time the 2 particle positions 
are assumed not to change i.e.  𝑠1=𝑠2=𝑠 𝑥1=𝑥𝛽1+𝐷𝑥𝜂1 ≡ 𝑥2=𝑥𝛽2+𝐷𝑥𝜂2 𝑧1=𝑧𝛽1 ≡ 𝑧2=𝑧𝛽2, thus:

Strategy step 5: 
scattering angle averages
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𝑑

𝑑 ҧ𝑡

𝜀𝑥1
𝛽𝑥

= න2𝑐 ҧ𝛽 ത𝑃න
ഥ𝜓min

𝜋

𝑑 ത𝜓න
0

2𝜋

𝑑 ത𝜙
𝑑 ത𝜎

𝑑ഥΩ

𝛿𝜀𝑥1
𝛽𝑥

sin ത𝜓 𝑑 ത𝑉

𝑃 = 𝑃12var ≝ 𝑃𝜂𝑠(𝜂1, 𝑠1) 𝑃𝜂𝑠(𝜂2, 𝑠2) 𝑃𝑥𝛽𝑥𝛽
′ 𝑥𝛽1 , 𝑥𝛽1

′ 𝑃𝑥𝛽𝑥𝛽
′ 𝑥𝛽2 , 𝑥𝛽2

′ 𝑃𝑧 𝑧′ 𝑧1, 𝑧1
′ 𝑃𝑧 𝑧′ 𝑧2, 𝑧2

′

𝑃 = 𝑃9var ≝ 𝑃𝜂(𝜂1)𝑃𝜂(𝜂2)𝑃𝑠(𝑠1)𝑃𝑥𝛽 𝑥𝛽1 𝑃𝑥𝛽
′ 𝑥𝛽1

′ 𝑃𝑥𝛽
′ 𝑥𝛽2

′ 𝑃𝑧 𝑧1 𝑃𝑧′ 𝑧1
′ 𝑃𝑧′ 𝑧2

′
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The scattering angle distribution is now examined. The Rutherford differential cross-section Eq. 1.11 for 
non-relativistic Coulomb collisions in a CM frame (i.e. ҧ𝛽≪1) of 2 ions of charge 𝑍 and atomic mass 𝐴 is:

with ത𝑇= ഥ𝒑2 − ഥ𝒑1
2/2𝐴𝑚=2𝐴𝑚 ҧ𝛽2𝑐2 is the ion kinetic energy, 2𝐴𝑚 ҧ𝛽𝑐 is the relative momentum 

between the hitting ions, for which ഥ𝒑1 + ഥ𝒑2=0 in CM, 𝑟0=𝑒
2/4𝜋𝜀0𝑚𝑐

2 is the classical proton radius, 
𝑟i=𝑟0𝑍

2/𝐴 is the classical ion radius (ref. [19] & ref. [B-D]).

wherein 𝛽𝑐 is the average particle velocity in the LAB frame. 

To evaluate ҧ𝛽 the above expression ഥ𝒑2 − ഥ𝒑1 =2𝑚 ҧ𝛽𝑐 in the CM frame must be Lorentz transformed 
back to the LAB frame to link ҧ𝛽𝑐 with 𝛽𝑐. All calculations done we find, providing ҧ𝛽≪1, ҧ𝛾≈1 (ref. [6,7]):

Strategy step 5: 
scattering angle averages
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𝑑 ത𝜎

𝑑ഥΩ
=

𝐴𝑚𝑍2𝑒2

4𝜋𝜀0 ഥ𝒑2 − ഥ𝒑1
2

2
1

sin4( ത𝜓/2)
=

𝑍2𝑟0𝑚𝑐
2

2ത𝑇

2
1

sin4( ത𝜓/2)
=

𝑍2

𝐴

𝑟0

4 ҧ𝛽2

2
1

sin4( ത𝜓/2)

ҧ𝛽 ≈
𝛽𝛾

2

𝑝1 − 𝑝2
𝛾𝑝

2

+ 𝑥1
′ − 𝑥2

′ 2 + 𝑧1
′ − 𝑧2

′ 2 =
𝛽𝛾

2
𝜉2 + 𝜃2 + 𝜁2
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The smallest angle ത𝜓min is defined by the maximum impact parameter ത𝑏max as (𝑟𝑖 is the ion radius):

To get tractable results it was assumed that ത𝜓min≪1, 
thus 2 ҧ𝛽2 ത𝑏max/𝑟𝑖≫1

Strategy step 5: 
scattering angle averages

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

The integration required to work out Eq. 2.8 can be done as follows, where the integral 𝐼𝑥1aims to 

integrate the mean time-derivative of 𝜀𝑥1 /𝛽𝑥. To do this replace 𝛿𝑝/𝑝 & 𝛿𝑝𝑥/𝑝 (Eq. 2.5) with their 

expression in terms of 𝛾, 𝜉, 𝜃, 𝜁, ത𝜙, ത𝜓 (Eq. 2.1). Then, integrate 𝛿𝜀𝑥1/𝛽𝑥 over ത𝜓 & ത𝜙 (e.g. Mathematica)

with Eq.2.11 and expand the scattering integrals to first order in ത𝜓min yields:

𝐼𝑥1≡ඵ
ഥΩ

𝑑ഥΩ
𝑑 ത𝜎

𝑑ഥΩ

𝛿𝜀𝑥1
𝛽𝑥

=න
ഥ𝜓min

𝜋

𝑑 ത𝜓න
0

2𝜋

𝑑 ത𝜙
𝑑 ത𝜎

𝑑ഥΩ

𝛿𝜀𝑥1
𝛽𝑥

sin ത𝜓=

−
𝜋𝑟𝑖

2

8 ҧ𝛽4
𝜉2+𝜁2 − 2𝜃2+

𝐷𝑥
2+෩𝐷𝑥

2

𝛽𝑥
2 𝛾2 𝜁2+𝜃2 − 2𝜉2 +

6෩𝐷𝑥
𝛽𝑥

𝛾𝜉𝜃 +
𝜋𝑟𝑖

2

4 ҧ𝛽4
൝
4𝑥𝛽1
𝛽𝑥

𝛾𝑥𝐷𝑥𝛾𝜉+𝛼𝑥 𝐷𝑥
′𝛾𝜉 − 𝜃

tan
ത𝜓min

2
≈

𝑟𝑖

2 ҧ𝛽2 ത𝑏max

𝑟𝑖 =
𝑟0𝑍

2

𝐴
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The integrals 𝐼𝑧1and 𝐼𝑠1for the vertical and longitudinal momenta can be worked out too (zero vertical 
dispersion is supposed). Then (𝐼𝑥1,𝐼𝑧1 , 𝐼𝑠1) will give the transverse and longitudinal scattering integrals 

(𝛿𝐻 is now changed in 𝛿𝐻≈2𝜂𝛿𝑝𝑠/𝑝+ 𝛿𝑝𝑠/𝑝
2 since 𝛿𝑝≈𝑝𝑠, with 𝜂 ≝ Δ𝑝/𝑝): 

Strategy step 5: 
scattering angle averages
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ҧ𝐶log or 𝐶log are the Coulomb logarithms in CM or LAB frames. The log 

dependence makes the Coulomb log slowly changing over a big range 
of the elements concerned in its definition (ref. [8,10] & ref. [G]).

The two brackets (Eq.2.13) have similar tiny values as the angles 𝜉, 𝜃 and 𝜁≪1; but the first bracket is 
negligible compared to the second one since it is multiplied by the Coulomb logarithm (with usual 
values between 10 and 20). Hence, after rearranging the integral 𝐼𝑥1, it follows, with 𝑑ഥΩ= sin ത𝜓𝑑 ത𝜓𝑑 ത𝜙:

ҧ𝐶log ≝ ln
2 ҧ𝛽2 ത𝑏max

𝑟𝑖
= ln

2

ത𝜓min

𝐼𝑥1=න
ഥ𝜓min

𝜋

𝑑 ത𝜓න
0

2𝜋

𝑑 ത𝜙
𝑑 ത𝜎

𝑑ഥΩ

𝛿𝜀𝑥1
𝛽𝑥

sin ത𝜓=
𝜋𝑟𝑖

2

4 ҧ𝛽4
×

4𝑥𝛽1
𝛽𝑥

𝛾𝑥𝐷𝑥𝛾𝜉+𝛼𝑥 𝐷𝑥
′𝛾𝜉 − 𝜃 +4𝑥𝛽1

′
෩𝐷𝑥𝛾𝜉

𝛽𝑥
− 𝜃 +𝜉2+𝜁2+

𝐷𝑥
2+෩𝐷𝑥

2

𝛽𝑥
2 𝛾2 𝜁2+𝜃2 +

2෩𝐷𝑥
𝛽𝑥

𝛾𝜉𝜃 ln
2 ҧ𝛽2 ത𝑏max

𝑟𝑖
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The computation of the mean change of the invariants 𝜀𝑥1,𝑧1& 𝐻 of all particles due to the multiple 

particle collisions requires to average the above three integrals of the two colliding particles over 
the 12 variables, reduced to 9 as (𝑠1,2, 𝑥1,2, 𝑧1,2) are dependent (cf. Eq. 2.10) via the probability 𝑃 ( ത𝑃).

Strategy step 5: 
scattering angle averages
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𝐼𝑠1
𝐼𝑥1
𝐼𝑧1

≡ න
ഥ𝜓min

𝜋

𝑑 ത𝜓න
0

2𝜋

𝑑 ത𝜙 sin ത𝜓
𝑑 ത𝜎

𝑑ഥΩ

𝛿𝐻1/𝛾
2

𝛿𝜀𝑥1/𝛽𝑥
𝛿𝜀𝑧1/𝛽𝑧

=
𝜋𝑟𝑖

2

4 ҧ𝛽4
ln

2 ҧ𝛽2 ത𝑏max

𝑟𝑖

×

−
4𝜂1
𝛾
𝜉 + 𝜃2 + 𝜁2

4𝑥𝛽1
𝛽𝑥

𝛾𝑥𝐷𝑥𝛾𝜉+𝛼𝑥 𝐷𝑥
′𝛾𝜉 − 𝜃 +4𝑥𝛽1

′
෩𝐷𝑥𝛾𝜉

𝛽𝑥
− 𝜃 + 𝜉2+𝜁2+

𝐷𝑥
2+෩𝐷𝑥

2

𝛽𝑥
2 𝛾2 𝜁2+𝜃2 +

2෩𝐷𝑥
𝛽𝑥

𝛾𝜉𝜃

−
4𝛼𝑧𝑧1
𝛽𝑧

𝜁 − 4𝑧1
′𝜁 + 𝜉2 + 𝜃2
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In the CM frame all derivatives 𝑑/𝑑𝑠 are reduced by 𝛾 because of the Lorentz contraction along 𝑠 (e.g. 
ത𝑃=𝑃/γ, ത𝜎𝑥𝛽

′ =𝜎𝑥𝛽
′ /γ), the transverse sizes & relative momentum spread stay unchanged (e.g. ത𝜎𝑥𝛽=𝜎𝑥𝛽, 

ത𝜎𝜂=𝜎𝜂, ത𝑏max=𝑏max) and the bunch length turns into ത𝜎𝑠=𝛾𝜎𝑠.

Accelerator & storage ring moving coordinates
𝒓(𝑠) = 𝒓0 𝑠 + 𝑑𝒓(𝑠 𝑑𝒓(𝑠) = 𝑥 𝑠 ෝ𝒙 + 𝑧 𝑠 ො𝒛

The relative velocity between 2 scattering particles in the CM
frame is 2𝑐 ҧ𝛽. Let’s call ത𝑃scat the likelihood (or plausibility) for 
a collision per unit time and solid angle 𝑑ഥΩ in the CM frame. 
Suppose the probability 𝑃 is specified in LAB frame; hence 
ത𝑃=𝑃/𝛾 plus an “underlying” time gap 𝑑 ҧ𝑡=𝑑𝑡/𝛾 induce two 
factors 𝛾 for 𝑃scat. So, through the Rutherford cross-section 
formula (Eq. 2.11) the scattering likelihood per unit time in a 
storage ring converts from ത𝑃scat to 𝑃scat by way of:
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ത𝑃scat = 2𝑐 ҧ𝛽 ത𝑃
𝑑 ത𝜎

𝑑ഥΩ
𝑑ഥΩ 𝑃scat =

2𝑐 ҧ𝛽𝑃

𝛾2
𝑑 ത𝜎

𝑑ഥΩ
sin ത𝜓𝑑 ത𝜓𝑑 ത𝜙

Strategy step 5: 
scattering angle averages Core IBS model
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Changing the 9 variables of the distribution 𝑃 into new ones 𝜂, 𝑠, 𝜉, 𝑥𝛽, 𝑥𝛽
′ , 𝜃, 𝑧, 𝑧′, 𝜁 gives a new 𝒫 via: 

The Jacobian of the transformation is det 𝐽 =𝛾. The relation between the new and initial phase 
volume elements is related to the transformation of multiple integrals by:

𝑑𝑉 = 𝑑𝜂1𝑑𝜂2𝑑𝑠1𝑑𝑥𝛽1𝑑𝑥𝛽1
′ 𝑑𝑥𝛽2

′ 𝑑𝑧1𝑑𝑧1
′ , 𝑑𝑧2

′

𝑑𝒱 = 𝑑𝜂𝑑𝜉𝑑𝑠𝑑𝑥𝛽𝑑𝑥𝛽
′ 𝑑𝜃𝑑𝑧𝑑𝑧′𝑑𝜁

Strategy step 6: 
particle beam averages
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𝑥𝛽1,2 = 𝑥𝛽 ∓ 𝐷𝑥𝛾𝜉/2 𝑥𝛽1,2
′ = 𝑥𝛽

′ ± (𝜃 − 𝐷𝑥
′𝛾𝜉)/2

𝑧1,2
′ = 𝑧′ ± 𝜁/2 𝜂1,2 = 𝜂 ± 𝛾𝜉/2

න
𝑉

𝑃𝑑𝑉 = න
𝒱

det 𝐽 𝒫𝑑𝒱

𝑑

𝑑𝑡

𝐻 /𝛾2

𝜀𝑥 /𝛽𝑥
𝜀𝑧 /𝛽𝑧

= න
𝒱

2𝑐 ҧ𝛽𝒫

𝛾2

𝐼𝑠
𝐼𝑥
𝐼𝑧

𝑑𝒱

𝑃 𝜂1, 𝜂2, 𝑠1, 𝑥𝛽1 , 𝑥𝛽1
′ , 𝑥𝛽2

′ , 𝑧1, 𝑧1
′ , 𝑧2

′ ⟼𝒫 𝜂, 𝜉, 𝑠, 𝑥𝛽 , 𝑥𝛽
′ , 𝜃, 𝑧, 𝑧′, 𝜁

and thus:

The mean invariant change Eq. 2.8 can be rewritten as 
follows via Eq. 2.17, swapping the variables 𝜂1, 𝑥𝛽1 , 𝑥𝛽1

′ ,

𝑧1, 𝑧1
′ , 𝑠1 with 𝜂, 𝑥𝛽 , 𝑥𝛽

′ , 𝑧, 𝑧′, 𝑠 (Eq. 2.19). This yields the 

formal result (integrals over 𝜉, 𝜃, 𝜁 are from −∞ to ∞):

𝑥1,2 = 𝑥
𝑧1,2 = 𝑧 𝑠1,2 = 𝑠

Core IBS model

No hypothesis regarding 
𝒫 were made up to here
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o Eq. 2.23 for the average change of the invariants 𝜀𝑥,𝑧 & 𝐻 makes no a priory assumption about the 
particle density distribution 𝒫 in the bunch. 

o To formulate IBS analytical models it is frequently assumed that the betatron amplitudes, angles, 
momentum deviations and synchrotron coordinates are Gaussian distributed for bunched beams 
since ‘Gaussian integration’ is rather easy to make.

Strategy step 6: 
particle beam averages
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𝑑

𝑑𝑡

𝐻 /𝛾2

𝜀𝑥 /𝛽𝑥
𝜀𝑧 /𝛽𝑧

= ൾ
𝜋𝑐𝑟𝑖

2

2
න
𝒱

𝑑𝒱

ҧ𝛽3𝛾
𝒫 𝜂, 𝑠, 𝜉, 𝑥𝛽 , 𝑥𝛽

′ , 𝜃, 𝑧, 𝑧′, 𝜁 ln
2 ҧ𝛽2 ത𝑏max

𝑟𝑖

ං×

𝜃2 + 𝜁2 − 2𝜉2

𝜉2 + 𝜁2 − 2𝜃2 +
𝐷𝑥

2 + ෩𝐷𝑥
2

𝛽𝑥
2 𝛾2(𝜁2+𝜃2) −

2𝛾𝑥𝐷𝑥
2

𝛽𝑥
𝛾2𝜉2 −

2𝐷𝑥
′

𝛽𝑥
𝛼𝑥𝐷𝑥 + ෩𝐷𝑥

𝜉2 + 𝜃2 − 2𝜁2

𝛾2𝜉2

By construction 𝒫 is symmetrical as regards to 𝜉, 𝜃, 𝜁. Hence, the integrals over −∞,∞ vanish for the 
linear terms in 𝜉, 𝜃, 𝜁 of the integrand. So, just keep the factors 𝜉2, 𝜃2, 𝜉2, 𝜁2 and Eq. 2.22 reduces to:

Core IBS model
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Let us describe Gaussian distributions 𝑃𝑥𝛽𝑥𝛽
′ & 𝑃𝑧𝛽𝑧𝛽

′ in terms of the primary variables 𝜂1, 𝜂2, 𝑠1, … 𝑧2
′ in 

LAB frame (with 𝑧𝛽1,2≡𝑧1,2 & 𝑧𝛽1,2
′ ≡𝑧1,2

′ assuming 𝐷𝑧=𝐷𝑧
′=0) for the betatron amplitudes & angles and 

𝑃𝜂𝑠 for momentum and bunch length deviations (bunched beams) (ref. [9]):

IBS analytical model

𝑄 = constant is a tilted ellipse with correlation coefficient 𝜌𝑥 = 𝛼𝑥/ 1 + 𝛼𝑥
2. The density distribution 

𝑃 must be well-matched to the Courant-Snyder invariant 𝜀𝑥 = 𝛾𝑥𝑥𝛽
2 + 2𝛼𝑥𝑥𝛽𝑥𝛽

′ + 𝛽𝑥𝑥𝛽
′2 (related to the 

phase space area used by the beam, i.e. 𝜀𝑥=area/𝜋).

Strategy step 6: 
particle beam averages

The same in vertical 𝑃𝑧𝛽𝑧𝛽
′ . Here 𝜎𝑥𝛽, 𝜎𝑥𝛽

′ , 𝜎𝜂 are rms values of the related variables, 𝜎𝑠 the rms

bunch length, ∆𝑠 = 𝑠 −𝑠0 the synchrotron coordinate  (position relative to the synchronous particle).
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𝑃𝑥𝛽𝑥𝛽
′ =

1 + 𝛼𝑥
2

2𝜋𝜎𝑥𝛽𝜎𝑥𝛽
′
exp −𝑄(𝑥𝛽 , 𝑥𝛽

′ ) 𝑄 𝑥𝛽 , 𝑥𝛽
′ =

1 + 𝛼𝑥
2

2

𝑥𝛽
2

𝜎𝑥𝛽
2 +

2𝑥𝛽𝑥𝛽
′ 𝛼𝑥

𝜎𝑥𝛽𝜎𝑥𝛽
′ 1 + 𝛼𝑥

2
+
𝑥𝛽
′ 2

𝜎
𝑥𝛽
′
2

𝑃𝜂𝑠=𝑃𝜂𝑃𝑠=
1

2𝜋𝜎𝜂𝜎𝑠
exp −

𝜂2

2𝜎𝜂
2 −

(𝑠−𝑠0)
2

2𝜎𝑠
2
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Consider a Gaussian beam with a rms value 𝜎𝑥𝛽. For a phase area covering a fraction 𝐹 of this beam the

emittance at 𝐹 [%] of particles in phase space is (the function 𝐹(𝜀𝑥) being the cumulative probability):

E.g. 𝜀𝑥=(1, 4, 6)𝜎𝑥𝛽
2 /𝛽𝑥 picking 𝐹= 39, 86, 95 %. Unlike 𝐹, “projected emittances”, whose beam sizes

cover a beam fraction 𝐹proj projected onto the betatron amplitude axis, e.g. 𝜀𝑥
proj

=(1, 4, 6)𝜎𝑥𝛽
2 /𝛽𝑥 (the 

same as before) picking 𝐹proj= 68, 95, 99 %. Also, 𝑃𝜀𝑥 𝜀𝑥 writes:

86%

= 6𝜎𝑥𝛽

= 6𝜎𝑥𝛽
′
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𝑃𝑥𝛽𝑥𝛽
′ can be also rephrased (so 𝑃𝑧𝛽𝑧𝛽

′ ):

𝑃𝑥𝛽𝑥𝛽
′ =

𝛽𝑥

2𝜎𝑥𝛽
2 exp −

𝛽𝑥

2𝜎𝑥𝛽
2 𝛾𝑥𝑥𝛽

2+2𝛼𝑥𝑥𝛽𝑥𝛽
′+𝛽𝑥𝑥𝛽

′2

𝑃𝜀𝑥 𝜀𝑥 ≝ d𝐹(𝜀𝑥)/d𝜀𝑥 ⟶ 𝑃𝜀𝑥=
𝛽𝑥

2𝜎𝑥𝛽
2 exp −

𝛽𝑥𝜀𝑥

2𝜎𝑥𝛽
2

𝜀𝑥=− Τ2𝜎𝑥𝛽
2 𝛽𝑥 ln 1 − 𝐹

Phase space elliptical contour enclosing 86% of the beam

Strategy step 6: 
particle beam averages IBS analytical model
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𝐷𝑥,𝑧
′ = 𝛽𝑥,𝑧

′ = −2𝛼𝑥,𝑧 = 0 ⟹ ෩𝐷𝑥,𝑧 = 𝛼𝑥,𝑧𝐷𝑥,𝑧+𝛽𝑥,𝑧𝐷𝑥,𝑧
′ = 0 𝛾𝑥,𝑧 = 𝛽𝑥,𝑧

−1

𝒫𝑥𝛽𝑥𝛽
′ 𝑥𝛽 ∓

𝐷𝑥𝛾𝜉

2
, 𝑥𝛽

′ +
𝜃

2
𝒫𝑧𝑧′ 𝑧, 𝑧′ ±

𝜁

2
𝒫𝜂(𝜂 ±

𝛾𝜉

2
) 𝒫𝑠

2 s

o Considering 𝑁𝑏 particles in a bunch; after integrating (with Mathematica) the 6 distributions 𝒫‘s over
𝜂, 𝑠, 𝑥𝛽 , 𝑥𝛽

′ , 𝑧, 𝑧′ we get (the 3 lasting integrals over 𝜉, 𝜃, 𝜁 will be solved later):

o The next step is to convert the LAB frame distribution 𝑃, stated in 9 variables 𝜂1,2, 𝑠1, 𝑥𝛽1 , 𝑥𝛽1,2
′ , 𝑧1, 𝑧1,2

′ , 

into 𝒫, expressed in terms of the 9 variables 𝜂, 𝜉, 𝑠, 𝑥𝛽 , 𝑥𝛽
′ , 𝜃, 𝑧, 𝑧′, 𝜁 (cf. Eq. 2.20 and e.g. Eq. 2.24

To simplify we neglect the derivatives of the dispersion and betatron functions (𝐷𝑧=0 early premise): 

o In turn the density distribution 𝒫 is integrated over the 6 variables 𝜂, 𝑠, 𝑥𝛽, 𝑥𝛽
′ , 𝑧, 𝑧′ yielding 𝒫(𝜉, 𝜃, 𝜁)

in terms of the 3 left over variables 𝜉, 𝜃, 𝜁. 

Using the change of variables Eq. 2.19, 𝑥𝛽1,2
′ cuts to 𝑥𝛽

′ ± 𝜃/2 as 𝐷𝑥
′ = 0 and Eq. 2.24 rewrites like:

Strategy step 6: 
particle beam averages IBS analytical model
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For example let’s compute the 2 terms 𝒫𝜂 in Eq. 2.26 (using Eq. 2.24 for 𝑃𝜂(𝜂) and remembering that 2 

particle momenta are involved in each interaction). The result of Gaussian integration is: 

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝒫 𝜉, 𝜃, 𝜁 = 𝑁𝑏 ෑ

𝑢=𝜂, 𝑠, 𝑥𝛽

𝑥𝛽
′ , 𝑧, 𝑧′

න
−∞

∞

𝒫𝑢 𝑢 ±
𝛾𝜆𝑢
2

𝒫𝑢 𝑢 ∓
𝛾𝜆𝑢
2

𝑑𝑢 =

= 𝑁𝑏

exp −
𝛾2𝜉2

4
1
𝜎𝜂
2 +

𝐷𝑥
2

𝜎𝑥𝛽
2 −

𝜃2

4𝜎
𝑥𝛽
′
2 −

𝜁2

4𝜎𝑧′
2

64𝜋3𝜎𝑥𝛽𝜎𝑥𝛽
′ 𝜎𝑧𝜎𝑧′𝜎𝜂𝜎𝑠

In which 𝜆𝑢 stands for any 𝜉, 0, 𝐷𝑥𝜉, 𝜃, or 𝜁. Now 𝒫 reduces to a function of 𝜉, 𝜃, 𝜁.

𝑃𝜂(𝜂1, 𝜂2)=𝑃𝜂(𝜂1)𝑃𝜂(𝜂2) ⟼ 𝒫𝜂 𝑢±
𝛾𝜉

2
𝒫𝜂 𝑢∓

𝛾𝜉

2
න
−∞

∞

𝒫𝜂 𝑢±
𝛾𝜉

2
𝒫𝜂 𝑢∓

𝛾𝜉

2
𝑑𝜂 =

1

2 𝜋𝜎𝜂
exp −

𝛾2𝜉2

4𝜎𝜂
2

Strategy step 6: 
particle beam averages IBS analytical model
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with for bunched beams: 

The integrals over 𝜉, 𝜃, 𝜁 must still be solved to work out the mean change of the invariants.

IBS analytical model
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𝑑

𝑑𝑡

𝐻 /𝛾2

𝜀𝑥 /𝛽𝑥
𝜀𝑧 /𝛽𝑧

= 4𝒜 ൾම
−∞

∞ 𝑑𝜉𝑑𝜃𝑑𝜁

𝜉2 + 𝜃2 + 𝜁2 3/2
exp −

𝛾2𝜉2

4

1

𝜎𝜂
2 +

𝐷𝑥
2

𝜎𝑥𝛽
2 −

𝜃2

4𝜎
𝑥𝛽
′
2 −

𝜁2

4𝜎𝑧′
2

ං×

𝜃2 + 𝜁2 − 2𝜉2

𝜉2 + 𝜁2 − 2𝜃2 +
𝐷𝑥
2

𝛽𝑥
2 𝛾

2(𝜁2 + 𝜃2 − 2𝜉2)

𝜉2 + 𝜃2 − 2𝜁2

ln
𝑞2

4
𝜉2+𝜃2+𝜁2

𝒜 =
𝑐𝑟𝑖

2𝑁𝑏
64𝜋2𝛽3𝛾4𝜎𝑥𝛽𝜎𝑥𝛽

′ 𝜎𝑧𝜎𝑧′𝜎𝜂𝜎𝑠
=

𝑐𝑟𝑖
2𝑁𝑏

64𝛽3𝛾4𝜀𝑥𝜀𝑧𝜀𝑠
𝜀𝑠 = 𝜎𝜂𝜎𝑠 [𝑚]

At that point we introduce 𝒫 𝜉, 𝜃, 𝜁 into the mean invariant change 𝜀𝑥,𝑧 & 𝐻 Eq. 2.23, wherein all the 

variables are expressed in LAB frame except ҧ𝛽 (since ത𝑏max=𝑏max). The Lorentz factor ҧ𝛽 is so converted 

back to LAB frame with Eq. 2.12: 2 ҧ𝛽 ≈ 𝛽𝛾 𝜉2+ 𝜃2+𝜁2, yielding (with 𝑞 ≝ 𝛽𝛾 2𝑏max/𝑟𝑖):

Strategy step 6: 
particle beam averages
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In his initial model (1974) Piwinski (ref. [3]) developed formulae for the IBS growth rates 1/𝜏𝜂,𝑥,𝑧 as the 

change in the betatron oscillation amplitudes 𝜎𝑥𝛽𝑧𝛽 (equal to the square root of emittances 𝜀𝑥,𝑧) and 

momentum spread 𝜎𝜂 per unit time caused by scattering events (with 𝐻 ≈ 𝜂 2=𝜎𝜂
2):

1

𝛾𝑡
2 ≝ 𝛼𝑝 ≈

𝐷𝑥
𝑅

≈
1

𝑄𝑥
2

𝜎𝑥𝛽,𝑧𝛽= 𝛽𝑥,𝑧𝜀𝑥,𝑧 𝜎𝑥𝛽
′ ,𝑧𝛽

′=
𝜀𝑥,𝑧
𝛽𝑥,𝑧

𝛼𝑝 ≝
1

2𝜋 𝑅
ර
𝐷𝑥(𝑠)

𝜌(𝑠)
𝑑𝑠 =

𝐷𝑥(𝑠)

𝜌(𝑠)
𝜂𝑡 ≝

1

𝛾𝑡
2 −

1

𝛾2

Original Piwinski model 
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Strategy step 7: 
growth rates calculation

where a bracket means averaging, and 𝜌, 𝑅 , 𝑄𝑥 , 𝛼𝑝 , 𝛾𝑡, 𝜂𝑡 are the ring curvature and mean radius, the 

betatron tune, momentum compaction factor, transition energy and slip factor. Also: 

𝛽𝑥 ≈
𝑅

𝑄𝑥
𝐷𝑥 ≈

𝛽𝑥
𝑄𝑥

=
𝑅

𝑄𝑥
2 ⟹

𝐷𝑥
𝑅

≈
1

𝑄𝑥
2

To this end, besides cancelling 𝛼𝑥,𝑧, 𝐷𝑥,𝑧
′ and 𝐷𝑧, he makes use of the smooth focusing approximation, in 

which only the mean values of the lattice functions are considered:

1

𝜏𝜂
=

1

𝜎𝜂

𝑑𝜎𝜂

𝑑𝑡
≡

1

2 𝐻

𝑑 𝐻

𝑑𝑡

1

𝜏𝑥,𝑧
=

1

𝜎𝑥𝛽,𝑧𝛽

𝑑𝜎𝒙𝛽,𝑧𝛽
𝑑𝑡

≡
1

2 𝜀𝑥,𝑧

𝑑 𝜀𝑥,𝑧
𝑑𝑡

≡
1

𝜀𝑥,𝑧
1/2

𝑑 𝜀𝑥,𝑧
1/2

𝑑𝑡
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𝐷 𝜇, 𝜈 =
1

𝑐2
𝑏2cos2 𝜇 + sin2 𝜇 cos2 𝜈 + 𝑎2sin2 𝜈

𝑔1 𝜇, 𝜈 = 1 − 3sin2 𝜇 cos2 𝜈 𝑔2 𝜇, 𝜈 = 1 − 3sin2 𝜇 sin2 𝜈 𝑔3 𝜇, 𝜈 = 1 − 3cos2 𝜇

1/𝜏𝜂
1/𝜏𝑥
1/𝜏𝑧

=
𝑞2

2𝑐2

1 − 𝑑2

𝑎2

𝑏2

𝑑

𝑑𝑡

𝐻 /𝛾2

𝜀𝑥 /𝛽𝑥
𝜀𝑧 /𝛽𝑧

=
𝒜

𝑐2
ൽන
0

∞

𝑑𝑟න
0

𝜋

𝑑𝜇න
0

2𝜋

𝑑𝜈

ං× sin 𝜇 exp −𝑟𝐷 𝜇, 𝜈 ln 𝑟

1 − 𝑑2 𝑔1 𝜇, 𝜈

𝑎2𝑔2 𝜇, 𝜈 + 𝑑2𝑔1 𝜇, 𝜈

𝑏2𝑔3 𝜇, 𝜈

Notice that the form of the 1st column in Eq. 2.27 (𝛾−2d 𝐻 /d𝑡 & 𝛽𝑥,𝑧
−1d 𝜀𝑥,𝑧 /d𝑡) does not fit Eq. 2.29 

( 2 𝐻 −1d 𝐻 /d𝑡 & 𝜀𝑥,𝑧
−1/2

d 𝜀𝑥,𝑧
1/2

/d𝑡) for 1/𝜏𝜂,𝑥,𝑧. So, new quantities 𝑎, 𝑏, 𝑐, 𝑑 (cf. next slide) and 

𝑞 (see 2.27), are added to the 1st column of Eq. 2.27 for good match with the IBS growth rates 1/𝜏𝜂,𝑥,𝑧.

To this end we do a double change of variables to convert Eq. 2.27 to coordinates 𝜉, 𝜃, 𝜁↦2 𝑢, 𝑣, 𝑤 /𝑞

and next to spherical coordinates 𝑢, 𝑣, 𝑤 ↦ 𝑟 sin 𝜇 cos 𝜈 , sin 𝜇 sin 𝜈, cos 𝜇 . After some work we get:

Strategy step 7: 
growth rates calculation Original Piwinski model 
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1

𝜎ℎ
2=

1

𝜎𝜂
2 +

𝐷𝑥
2

𝜎𝑥𝛽
2 → 𝜎ℎ=

𝜎𝜂𝜎𝑥𝛽
𝜎𝑥

𝑎=
𝜎ℎ
𝛾𝜎𝑥𝛽

′ =
𝜎ℎ
𝛾

𝛽𝑥
𝜀𝑥
=
𝛽𝑥𝜎𝜂

𝛾𝜎𝑥
𝑏=

𝜎ℎ
𝛾𝜎𝑧𝛽

′ =
𝜎ℎ
𝛾

𝛽𝑧
𝜀𝑧
=
𝛽𝑧𝜎𝜂

𝛾𝜎𝑧

𝑐=
𝑞𝜎ℎ
𝛾

=𝜎ℎ
2𝛽2𝑏max

𝑟𝑖
𝑞=𝛾 exp

𝐶log

2
𝑑2=1 −

𝜎ℎ
2

𝜎𝜂
2
→ 𝑑=

𝐷𝑥𝜎𝜂

𝜎𝑥

The aim is to write Eq. 2.30 in a reduced form. To this end a scattering function 𝑓(𝑎, 𝑏, 𝑐) is introduced 
instead of the functions 𝑔1,2,3, in which 𝜌=𝑟/𝑐2 replaces 𝑟 and 𝐷0 𝜇, 𝜈 swaps with 𝐷 𝜇, 𝜈 (Eq. 2.31): 

𝑓 𝑎, 𝑏, 𝑐 = 2න
0

𝜋

𝑑𝜇න
0

2𝜋

𝑑𝜈 sin 𝜇 1 − 3cos2 𝜇 න
0

∞

𝑑𝜌 log 𝑐2𝜌 exp −𝜌𝐷0 𝜇, 𝜈

𝐷0 𝜇, 𝜈 = sin2 𝜇 𝑎2cos2 𝜈 + 𝑏2sin2 𝜈 + cos2 𝜇

The functions 𝐷, 𝑔1,2,3 were introduced for convenience (keeping in mind that 𝑧=𝑧𝛽 , 𝑧
′=𝑧𝛽

′ Eq. 2.2):

𝑓 is integrable over the variable 𝜌. So, solving it by Mathematica reduces 𝑓 to the double integral:

Strategy step 7: 
growth rates calculation Original Piwinski model 
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Strategy step 7: 
IBS rise times

𝑓 𝑎, 𝑏, 𝑐 = 2න
0

𝜋

𝑑𝜇න
0

2𝜋

𝑑𝜈 sin 𝜇 1 − 3cos2 𝜇
2log 𝑐 −𝐶Euler − log 𝐷0 𝜇, 𝜈

𝐷0 𝜇, 𝜈
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In line with the Evans & Zotter approach (ref. [4]), 𝑓 is first converted by a change of variables 𝜇, 𝜈 to 
𝑥= cos 𝜇, 𝑧=2𝜈 using the periodicity of sin2 and cos2 with 𝜋 and the symmetry about 𝜋/2, allowing to 
replace the limit 𝜋 of 𝜇 by 𝜋/2 and 2𝜋 of 𝜈 by 𝜋/2 (providing one multiplies the integral by an additional 
factor 8). Thus, after tricky working 𝑓 can be shrunk to the single integral: 

where 𝐶Euler≈0.5772 is Euler’s constant. 

𝑓 𝑎, 𝑏, 𝑐 = 8𝜋න
0

1

2 ln
ሚ𝐶

2

1

𝑃(𝑥)
+

1

𝑄(𝑥)
− 𝐶Euler

1 − 3𝑥2

𝑃(𝑥)𝑄(𝑥)
𝑑𝑥

𝑃(𝑥) = 𝑎2 + 1 − 𝑎2 𝑥2

𝑄(𝑥) = 𝑏2 + 1 − 𝑏2 𝑥2
𝑎=

𝜎ℎ
𝛾𝜎𝑥𝛽

′
𝑏=

𝜎ℎ
𝛾𝜎𝑧𝛽

′
𝑐=

𝑞𝜎ℎ
𝛾

=𝜎ℎ
2𝛽2𝑏max

𝑟𝑖

1/2

ሚ𝐶= log 𝑐2 −𝐶Euler

with

Original Piwinski model 
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Eq. 2.34 is now the “new scattering function” 𝑓 𝑎, 𝑏, 𝑐 . It needs numerical integration but for a few 
cases (see ref. [4] for a clear and detailed derivation, and ref. [3,9,13,17] too).

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

1

𝜏𝜂
1

𝜏𝑥
1

𝜏𝑧

=𝒜

𝜎𝑥𝛽
2

𝜎𝑥
2 𝑓(𝑎, 𝑏, 𝑐)

𝑓
1

𝑎
,
𝑏

𝑎
,
𝑐

𝑎
+
𝐷𝑥
2𝜎𝜂

2

𝜎𝑥𝛽
2 𝑓(𝑎, 𝑏, 𝑐)

𝑓
1

𝑏
,
𝑎

𝑏
,
𝑐

𝑏

After some more work the IBS growth rates for bunched beams Eq. 2.30 can be rewritten into the dense 
form below, that agrees with ref. [I], Eqs. 13.42-13.53, assuming none vertical dispersion function 𝐷𝑧=0:

in which, together with Eq. 2.32 

𝜎𝑥𝛽
2

𝜎𝑥
2 = 1 −

𝐷𝑥
2𝜎𝜂

2

𝜎𝑥
2 = 1 − 𝑑2 =

𝜎ℎ
2

𝜎𝜂
2

Strategy step 7: 
IBS rise times Original Piwinski model 
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o Above transition energy the particle property is often identify by a negative mass comportment.
o Association with a gas in a closed box is not valid and the overall oscillation energy can increase. 
o The beam behaviour can be described via a global invariant which can be cast into a form close to the 

sum of the mean invariant change 𝜀𝑥,𝑧 & 𝐻 over the collisions for all particles, i.e. multiplying 𝐻 /𝛾2

by 1 − 𝛾2𝐷𝑥
2/𝛽𝑥

2) in the summation yields a non invariant quantity because 𝐷𝑥/𝛽𝑥 varies.
o Smooth focusing approx. for the tune, momentum compaction factor and transition energy yields: 

Invariants

𝐻
1

𝛾2
−
𝐷𝑥
2

𝛽𝑥
2 +

𝜀𝑥
𝛽𝑥

+
𝜀𝑧
𝛽𝑧

≠ constant

o Below transition (𝜂𝑡<0) the sum of the 3 (positive) invariants is bounded, and thus the 3 oscillation 
energies. So the “emittances” are redistributed in all 3 phase planes, holding the whole phase space 
invariant. The distribution 𝑃 is stable: equilibrium exists (like gaz molecules in a closed box).

o Above transition (𝜂𝑡≥0) the overall oscillation energy can increase as 𝜂𝑡>0: no equilibrium can exists.

𝜂𝑡 =
1

𝛾𝑡
2 −

1

𝛾2
(slip factor)

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝐻
1

𝛾2
−
1

𝛾𝑡
2 +

𝜀𝑥
𝛽𝑥

+
𝜀𝑧
𝛽𝑧

= constant

d

d𝑡
𝐻

1

𝛾2
−
1

𝛾𝑡
2 +

𝜀𝑥
𝛽𝑥

+
𝜀𝑧
𝛽𝑧

= 0

Original Piwinski model 
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Bjorken-Mtingwa model 

Γ is the 6-dim phase-space volume, 𝑁𝑏 the particle number per bunch, 𝒓= 𝑥, 𝑧, 𝜂 & 𝒑= 𝑝𝑥, 𝑝𝑧, 𝑝𝑠 the 
positions & momenta of the particles in the bunch, 𝜎𝑥𝛽 , 𝜎𝑧𝛽, 𝜎𝑠, 𝜎𝜂 the rms bunch width, height, length, 
momentum spread, 𝜀𝑥,𝑧,𝑠 the rms transverse & longitudinal emittances. The beam Gaussian distribution
𝑆 𝒓, 𝒑 is (𝑠0 is the synchronous particle position):

In line with Piwinski (ref. [3]), Gaussian beam phase-space densities are chosen, since they can be put in 
exponential canonical distributions for momentum product separability (refs. [20],[B]). So, from ref. [8]: 

Beam phase space density and emittance 𝜺𝒙, 𝜺𝒛, 𝜺𝒔

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑃 𝒓, 𝒑 =
𝑁𝑏
Γ
𝑒−𝑆 𝒓,𝒑 Γ = නd3𝒓d3𝒑 𝑒−𝑆(𝒓,𝒑) 𝑆 𝒓, 𝒑 = 𝑆(x) + 𝑆(z)+𝑆(s)

𝑆(r) =
𝛽𝑟

2𝜎𝑟𝛽
2 𝛾𝑟𝑟𝛽

2+2𝛼𝑟𝑟𝛽𝑟𝛽
′+𝛽𝑟𝑟𝛽

′2 𝑆(s)=
𝜂2

2𝜎𝜂
2+

𝑠−𝑠0
2

2𝜎𝑠
2 𝜀𝑟=

𝜎𝑟𝛽
2

𝛽𝑟
𝜀𝑠=𝜎𝜂𝜎𝑠

𝑟′=
∆𝑝𝑟
𝑝

𝜂=
∆𝑝𝑠
𝑝

𝜎𝜂=
𝜎𝑝
𝑝

𝑟𝛽=𝑟−𝐷𝑟𝜂 𝑟𝛽
′=𝑟′−𝐷𝑟

′𝜂

𝑟=𝑥, 𝑧
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Bjorken-Mtingwa model 

Bjorken & Mtingwa approach of IBS theory is based on the S-matrix, a time-evolution operator that 
relates the transition from an initial quantum state ۧ|𝑖 to a final state ۧ|𝑓 of a physical system facing to a 
collisional event. The matrix elements of S are the inner products 𝑓 𝑆 𝑖 , with characteristics:

• The squared modulus 𝑓 𝑆 𝑖 2 yields the probability 𝒫 for a transition from an initial to a final state.

• 𝑆 is linked to an amplitude ℳ stating the physical process: 𝑓 𝑆 𝑖 = 2𝜋 4𝛿4 𝑝1𝑓+𝑝2𝑓 −𝑝1𝑓 −𝑝1𝑓 iℳ.

Two-body scattering in the CM frame

In a 2−body scattering process particles 1 & 2 with energy-momentum 4-vectors 𝑝1,2≝𝑝1,2
𝜇 interact each 

other to give after collision two 4-momenta 𝑝1,2
′ ≝𝑝1,2

′𝜇 (i.e. 𝒑1+𝒑2 → 𝒑1
′+𝒑2

′ ) whose transition rate is, 
expressed in the Heaviside-Lorentz (HL) units ℏ=𝑐=1, (cf. ref. [8,11] and ref. [N,O]):

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

where ℳ is the scattering amplitude to be computed and 𝛾1,2=𝐸1,2/𝑀.

𝑑𝒫

𝑑𝑡
=
1

2
න𝑑𝒓

𝑑𝒑1
𝛾1

𝑑𝒑2
𝛾2

𝑃(𝒓, 𝒑1)𝑃(𝒓, 𝒑2) ℳ
2
𝑑𝒑1

′

𝛾1
′

𝑑𝒑2
′

𝛾2
′

𝛿4 𝑝1
′ + 𝑝2

′ − 𝑝1 − 𝑝2
2𝜋 2

𝑓 𝑆 𝑖 = 2𝜋 4𝛿4 𝑝1𝑓+𝑝2𝑓 −𝑝1𝑓 −𝑝1𝑓 ℳ

Eq. [2.40] stems from the electromagnetic scattering process of a spin-½ electron of mass 𝑚 off a free pointlike and 
structureless spin+½ proton of mass 𝑀, called “Dirac proton”, (in analogy with Eq. (7.42) and next ones in ref[O]). 

𝑒− 𝒑1

𝑒− 𝒑2
𝑒− 𝒑2

′

𝑒− 𝒑1
′

CM
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Bjorken-Mtingwa model 

The metric is 4−momentum2=energy2−3−momentum2. E.g. in HL units with 𝑐=1 we get: 

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑟≝𝑟𝜇≡ 𝑡, 𝒓 = 𝑡, 𝑥, 𝑧, 𝑠 𝑝≝𝑝𝜇≡ 𝐸, 𝒑 = 𝐸, 𝑝𝑥 , 𝑝𝑧 , 𝑝𝑠 𝑟𝜇=𝑔𝜇𝜈𝑟
𝜇= 𝑡,−𝑥,−𝑧, −𝑠 𝑝𝜇=𝑔𝜇𝜈𝑝

𝜇= 𝐸,−𝑝𝑥 , −𝑝𝑧 , −𝑝𝑠

𝑝1 ∙ 𝑝2≝ 𝑝1
𝜇
𝑝2𝜇=𝐸1𝐸2 − 𝒑1 ∙ 𝒑2 𝑟 ∙ 𝑝 ≝ 𝑟𝜇𝑝𝜇=𝑡𝐸 − 𝒓 ∙ 𝒑 with 𝑔11=1, 𝑔22=𝑔33=𝑔44=−1, 𝑔𝜇≠𝜈=0

o For ease the amplitude ℳ 2 is computed for a Coulomb scattering  among 2 electrons (not 𝑒−+𝑝+!) 
via the exchange of a virtual photon 𝛾 with 4-momentum 𝑞≝𝑞𝜇, using the Feynman diagram & rules. 

o To lessen the calculations in “real-life” collisions 𝑒−+𝑒−→𝑒−+𝑒− with 𝑒− of spin-1
2

and massless photon 
of spin 1, we use instead a “toy model“ which considers structureless particles and spinless bosons. 

• The coupling constant 𝑔E in quantum electrodynamic (QED) specifies the interaction strength 
between electrons and photons; 𝑔E is associated to the fine structure constant 𝛼E by: 𝑔E= 4𝜋𝛼E.             
In HL units (𝜖0=ℏ=𝑐=1) 𝛼E=𝑒

2/4𝜋 (with 𝑒≈0.303≈ 4𝜋/137.036, no charge unit), hence 𝑔E=𝑒. In 
SI units 𝛼E=𝑒

2/4𝜋𝜖0ℏ𝑐≈1/137, thus 𝑔E=𝑒/ 𝜖0ℏ𝑐=0.303.

• A boson propagator 𝑓(𝑞) is associated to the wavy line in the Feynman diagram and represents  
the momentum transfer from one 𝑒− to the other 𝑒− through the virtual photon 𝛾 .  

.

cf. Appendix 1-2

Two-body scattering in the CM frame (for toy theory)

cf. K A Tomilin, Eur.J.Phys Vol 20 Nb 5 Sept 1999



𝑒−𝑒−

𝑒− 𝑒−

𝛾

𝑝1 𝑝1
′

𝑝2
′𝑝2

sp
a
ce

time

𝑞=𝑝1
′−𝑝1

ℳ1
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𝑒−𝑒−

𝑒− 𝑒−

𝑝1

𝛾

𝑝2
′

𝑝1
′𝑝2

ℳ2

Bjorken-Mtingwa model 
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Two-body scattering in the CM frame (for toy theory)

The Feynman rules for spin-0 toy model allow to calculate more easily the propagator 𝑓(𝑞) and scattering 
amplitude ℳ for elastic collisions (4-momenta are conserved) . 
o With rules 2-3 we write one coupling constant of −i𝑔E for each vertex (whose product is −𝑔E

2) and 
one propagator 𝑓(𝑞) = i/𝑞2 for the single internal line. The overall product is −𝑔E

2i/𝑞2 (with 𝑞 ≝ 𝑞𝜇).
o Then, with rules 4-5 we multiply this product by the 𝛿-functions and integrate over 𝑞 the 1st𝛿 of the

−
i𝑔E

2

𝑞2 −𝑚𝛾
2 2𝜋 4𝛿4 𝑝1−𝑝1

′+𝑞 2𝜋 4𝛿4 𝑝2−𝑝2
′ − 𝑞

diagram with d4𝑞/ 2𝜋 4, and insert 𝑞↦𝑝1
′−𝑝1 (Eq. 2.42) in

the 2nd𝛿−function gives for 𝑚𝛾=0:

ℳ1 ≝ 𝑔E
2 𝑓 𝑞 = −i𝑔E

2න
1

𝑞2
2𝜋 4𝛿4 𝑝1 − 𝑝1

′ + 𝑞 2𝜋 4𝛿4 𝑝2 − 𝑝2
′ − 𝑝1

′ − 𝑝1
d4𝑞

2𝜋 4
i =

𝑔E
2

𝑝1
′ − 𝑝1

2

+

𝑞=𝑝2
′−𝑝1

which conserved the 4-momenta 
at the top & bottom vertex 

o With Rules 6 the last 𝛿-function is removed and the result 
is multiply by i. So the left Feynman diagram ℳ1 follows:

The 2 Feynman diagrams contribute to the particles scattering process 

cf. Appendix 1-2-3
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Bjorken-Mtingwa model 
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න
d4𝑞

𝑞2
𝛿4 𝑞 − 𝑝1

′ − 𝑝1 = 𝑝1
′ − 𝑝1

−2

Two-body scattering in the CM frame (for toy theory)

Eq. 2.41 holds because

To see the link of ℳ1 with a collisional process let’s rewrites 𝑞𝜇
2= 𝑝1

′−𝑝1
2 (HL units):

𝑞𝜇
2 = 𝑝1

′−𝑝1
2 = 𝑝1

′2 + 𝑝1
2−2𝑝1∙𝑝1

′ = 𝐸1
2 + 𝐸1

′2 − 𝒑1
2 − 𝒑1

′2 − 2 𝐸1𝐸1
′ − 𝒑1 ∙ 𝒑2

′ =

𝐸1 − 𝐸1
′ 2 − 𝒑1

2 + 𝒑1
′2 − 2 𝒑1 𝒑1

′ cos ത𝜓 = −2𝒑2 1−cos ത𝜓 = −4𝒑2 sin2 ത𝜓/2

Elastic collisions: 𝐸1=𝐸1
′=𝐸2=𝐸2

′ 𝒑1 = 𝒑1
′ = 𝒑2 = 𝒑2

′ 𝒑1∙𝒑1
′=𝒑2 cos ത𝜓 𝒑1∙𝒑2

′=− 𝒑2 cos ത𝜓

𝒑 ≝ 𝒑1 is the incident momentum particle 1 and ത𝜓 is the CM frame scattering angle between 𝒑1 & 𝒑1
′

after collision (π+ ത𝜓 is the scattering angle between 𝒑1 & 𝒑2
′ , so: −2𝒑2 1−cos 𝜋+ ത𝜓 =-4𝒑2 cos2 ത𝜓/2 ). 

with 𝑞 ≝ 𝑞𝜇= 𝑝1
′ − 𝑝1

𝜇
𝑞𝜇
2=𝑞𝜇𝑞𝜇= 𝑝1

′ − 𝑝1
2ℳ1 =

𝑔E
2

𝑝1
′ − 𝑝1

2≡
𝑔E
2

4𝒑2 sin2 ത𝜓/2

Finally, since 𝑔E=𝑒 in HL units Eq. [2.41] writes:
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Two-body scattering in the CM frame (for toy theory)

o Thus, the full amplitude ℳ=ℳ1+ℳ2 for the process 𝑒−+𝑒−→𝑒−+𝑒− is, with 𝑔E
2=4𝜋𝛼E=𝑒

2, HL units: 

o For two-body scattering in the CM frame with all 4 particle masses even, the Rutherford differential 
cross section is given by Eq. A.1, derived using the “Fermi’s Golden rule”, cf. ref. [M,P,Q]                         .

o At that stage, 𝑑𝒫/𝑑𝑡 Eq. 2.40 can be rewritten introducing ℳ 2 and the beam distribution 𝑃 𝒓, 𝒑

Eq. 2.39 into it, yielding ( 𝒑 = 𝒑1 = 𝒑2 ):

o The scattering amplitude ℳ2 for the right Feynman diagram
above is derived by exchanging 𝑝1

′with 𝑝2
′ in Eq. 2.42 giving: ℳ2 ≡

𝑔E
2

𝑝2
′ − 𝑝1

2
=

𝑔E
2

4𝒑2 cos2 ത𝜓/2

ℳ =
𝑔E
2

4𝒑2
1

sin2 ത𝜓/2
+

1

cos2 ത𝜓/2
= −

𝑒2

𝒑2 sin2 ത𝜓
⟹ ℳ 2 =

𝑒2

𝒑2 sin2 ത𝜓

2

𝑑𝒫

𝑑𝑡
=

𝑁𝑏
2Γ2

න𝑑𝒓
𝑑𝒑1
𝛾1

𝑑𝒑2
𝛾2

𝑒−𝑆(𝒓,𝒑1)−𝑆(𝒓,𝒑2)
𝑒2

𝒑 𝟐 sin2 ത𝜓

2
𝑑𝒑1

′

𝛾1
′

𝑑𝒑2
′

𝛾2
′

𝛿4 𝑝1
′ + 𝑝2

′ − 𝑝1 − 𝑝2
2𝜋 2

see Appendix 3
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where the bracket 〈∙〉 denotes an average around the ring circumference, and with 𝐿 = 𝐿𝑥 + 𝐿𝑧 + 𝐿𝑠:
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Final steps of IBS theory providing quantifiable growth rates

1

τu
=

1

τx,z,η
=

1

σx,z,η

dσx,z,η

dt
≝ εx,z

−1/2 d εx,z
1/2

dt
,
1

ση

dση

dt
≡

1

2 εx,z

d εx,z
dt

,
1

2ση
2

dση
2

dt

1

τu
=

cri
2NbClog

16πβ3γ4εxεzσsση
න
0

∞ dλ

det L + λI
Tr Lu Tr L + λI −1 − 3Tr Lu L + λI −1

𝐿𝑥=
𝛽𝑥
𝜀𝑥

1 −𝛾∅𝑥 0

−𝛾∅𝑥 𝛾2𝐻𝑥/𝛽𝑥 0
0 0 0

𝐿𝑧=
𝛽𝑧
𝜀𝑧

1 0 0
0 𝛾2𝐻𝑧/𝛽𝑧 −𝛾∅𝑧
0 −𝛾∅𝑧 1

𝐿𝑠=
𝛾2

𝜎𝜂
2

0 0 0
0 1 0
0 0 0

Bjorken & Mtingwa took on a vertical dispersion function 𝐷𝑧=0 to develop their equation (3.4) in ref. [8].
Its proof needs arduous work. The IBS growth rates τu

−1 below (with 𝑢=𝑥, 𝑧, 𝑠) for bunched beams (Eq. 
2.29) including the non-zero vertical dispersion 𝐷𝑧≠0 refs. [14,21] are derived from B & M Eq. (3.4): 
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After the bracket expansion in Eq. 2.45 the growth rates are simplified throughout right approximations 
(ref. [8]) and some work in the next form, cf. ref. [14] too:

Here the emittance 𝜀𝑥,𝑧 is the projected r.m.s. emittances on the betatron amplitude 𝑥, 𝑧 -axes, also 

written 𝜀𝑥,𝑧
proj

≝ 𝜎𝑥𝛽,𝑧𝛽
2 /𝛽𝑥,𝑧 whose beam profile covers 68% of the beam. This is not the r.m.s. phase 

plane emittance whose phase ellipse encloses only 39% beam fraction!

𝑁𝑏 is the number of particles per bunch, 𝑐 is the speed of light, 𝑟𝑖 the classical ion radius, 𝛽, 𝛾 the 
Lorentz factors & 𝛼𝑢, 𝛽𝑢, 𝐷𝑢, 𝐷𝑢

′ the optics parameters. The longitudinal emittance 𝜀𝑠 is defined either 
by the product 𝜀𝑠=𝜎𝑠𝜎𝜂 m or the momentum 𝑝 such that 𝜀𝑠=𝜋𝑝𝜎𝑠𝜎𝜂𝛽

−1𝑐−1 eVs (bunched beam) 

and 𝜎𝑠, 𝜎𝜂 are the bunch length and momentum spread. 𝐶log in Eq. 2.45 is the Coulomb log factor.

Final steps of IBS theory providing quantifiable growth rates

with:
∅𝑥,𝑧=

𝐷𝑥,𝑧𝛼𝑥,𝑧+𝐷𝑥,𝑧
′ 𝛽𝑥,𝑧

𝛽𝑥,𝑧
𝐻𝑥,𝑧=

𝐷𝑥,𝑧
2 +𝛽𝑥,𝑧

2 ∅𝑥,𝑧
2

𝛽𝑥,𝑧
∆𝑥=

𝛾2𝐻𝑥
𝛽𝑥

∆𝑧=
𝛾2𝐻𝑧
𝛽𝑧

∆𝑠=
𝛾2

𝜎𝜂
2

As well high energy IBS approximations to Bjorken-Mtingwa
theory were made by Bane & Mtingwa: refs. [12,16]
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The 9 coefficients 𝑎, 𝑏, 𝑐, 𝑎𝑥, 𝑏𝑥 , 𝑎𝑧, 𝑏𝑧, 𝑎𝑠, 𝑏𝑠 (not reproduced here) depend on the optics parameters 
of the storage ring lattice (cf. ref. [21]).

For illustration, the following figure displays the evolution of the Coulomb log for the ELENA 100 keV
low-energy antiproton decelerator ring calculated with Eq. 2.48.

𝐶log = min
ln 𝑟max

ln 𝑟min
𝑟max = min 𝜎𝑥, 𝜆𝐷 𝑟min = max 𝑟min

𝐶 , 𝑟min
𝑄𝑀

In 𝐶log the impact parameter 𝑟min is the larger of the classical distance of closest approach 𝑟min
𝐶 and 

the quantum diffraction limit from the nuclear radius 𝑟min
𝑄𝑀, and 𝑟max is the smaller of the mean rms

beam size 𝜎𝑥= 𝛽𝑥 𝜀𝑥 and the Debye length 𝜆𝐷. All these variables are explicitly defined as follows:

Final steps of IBS theory providing quantifiable growth rates

1

𝜏𝑢
=

𝑁𝑏𝑐𝑟0
2𝐶log

𝛾8𝜋𝛽3𝛾3𝜀𝑥𝜀𝑦𝜎𝑠𝜎𝜂

𝑍4

𝐴2
∆𝑢න

0

∞

𝑑𝜆
(𝑎𝑢 𝜆 + 𝑏𝑢) 𝜆

(𝜆3 + 𝑎𝜆2 + 𝑏𝜆 + 𝑐)3/2
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in which ρ is the particle volume density [m−3] and 𝐸⊥ is the 
transverse beam kinetic energy [eV] in the centre-of-mass 
frame.

𝜆𝐷 =
7.434

𝑍

2𝐸⊥
𝜌

ρ =
𝑁𝑏 × 10−6

64𝜋3 𝛽𝑥 𝜀𝑥 𝛽𝑦 𝜀𝑦𝜎𝑧
2

𝐸⊥ =
(𝛾2 − 1)𝐸0

2
𝜀𝑥
𝛽𝑥

𝑟min
𝐶 =

1.44 × 10−9𝑍2

2𝐸⊥
𝑟min
𝑄𝑀

=
1.973 × 10−13

8𝐸⊥𝐸0

(see ref. [10])

Fig. caption: Evolution of the calculated Coulomb logarithm during 1 
s on a 100 keV plateau for the nominal ELENA beam and the first two 
variants (see table slide 73).

Final steps of IBS theory providing quantifiable growth rates

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering



INTRABEAM SCATTERING
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 Part 3:  Applications

 IBS & LHC (7 TeV)

 IBS & ELENA (100 keV)

 Epilogue

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

 Appendices: Feynman rules



IBS Calculations

Steady State 
emittances

The IBS growth rates  in 
one turn (or one time step)

Complicate integrals 
averaged around the ring

Horizontal, vertical and 
longitudinal equilibrium states
and damping times due to SR 

damping

If ≠0 

If = 0 

 Steady state exists if we are below transition or in the 
presence of SR damping 

 𝑑𝑡 should be much smaller than the IBS growth times
 Good scanning of optics is important in order not to 

skip large IBS kick points
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Continuation… from Part 2
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LHC and SLHC beam parameter with improved variants
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IBS & LHC (7 TeV)

Nb (10
11) 1.15 1.15 1.70 2.36

𝜀𝐻,𝑉
𝑛 = 𝜀𝑛 = 𝛾𝜀 rms 𝜇m 3.75 2.54 2.65 2.60

𝛽∗ m 0.55 0.30 0.25 0.15
𝜎𝐻,𝑉
∗ = 𝜎∗ 𝜇m 16.58 10.11 9.40 7.21

𝜎𝐵𝐿 mm 75.50 75.50 75.50 75.50
𝜎Δ𝑝/𝑝 (10

−4) 1.13 1.13 1.13 1.13

𝜀𝐿 rms eVs 0.62 0.62 0.62 0.62
Crossing angle 𝜃 𝜇rad 285 337 355 454
Δ𝑄𝑏𝑏 head-on** 1.00 1.09 1.43 1.37
𝓛uminosity (1034) cm−2s−1 1.00 2.00 4.65 10.29

LHC Luminosity with nominal beam intensity SLHC Luminosity 
Case 1 Case 2 Case 3 Case 4

Initial IR
triplet

IR phase 1 triplet: 𝛽∗ = 0.30 m
reduced emittance

Ultimate N𝑏: 𝛽
∗ = 0.25 m

reduced emittance
>Ultimate N𝑏: 𝛽

∗ = 0.15 m
reduced emittance

o 1st case: nominal  beam and LHC parameters at top energy give the nominal luminosity of 1034cm−2s−1

o 2nd case: new optics will rise the crossing angle to 337 𝜇rad and the luminosity to 2 × 1034cm−2s−1

o 3rd case: will raise the head-on beam-beam tune shift to 1.43 and the luminosity to 4.65 × 1034cm−2s−1

o 4th case: with an intensity of 2.36 × 1011 protons/bunch a top luminosity of ~1035cm−2s−1 can be got.  

** Δ𝑄𝑏𝑏 normalized to the value of the nominal beam

ℒ =
𝑓𝑟𝑒𝑣𝑛𝑏𝑁𝑏γ

2𝑟𝑝𝛽
∗ ∆𝑄𝑏𝑏
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IBS effects in the SLHC
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IBS & LHC (7 TeV)

∆𝜀𝐿/𝜀𝐿 ∆𝜀𝐻/𝜀𝐻 ∆𝜀𝑉/𝜀𝑉
1st case Initial IR triplet 16% 9% -0.0001%

2nd case
IR phase 1 triplet  (𝛽∗ = 0.30 m)
reduced emittance

24% 21% -0.001%

3rd case
Ultimate N𝑏 (𝛽∗ = 0.25 m)
reduced emittance

32% 27% -0.001%

4th case
>Ultimate N𝑏 (𝛽∗ = 0.15 m)
reduced emittance

44% 37% -0.001%

IBS (Bjorken-Mtingwa model) and synchrotron radiation calculation to
estimate the LHC & SLHC beam emittances evolution during 7 TeV physics
coasts are done for the 4 nominal & reduced emittance beam cases

IBS emittance growth after a 10 hours beam coast

LHC: above transition ring 
𝛾 = 7461 ≫ 𝛾𝑡~53.8

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

o IBS growth rates:
1

𝜏𝐿,𝐻,𝑉
=

𝑁𝑏𝑐𝑟0
2𝐶log

8𝜋𝛽3𝛾4𝜀𝐻𝜀𝑉𝜎𝐵𝐿𝜎∆𝑝/𝑝
𝐻𝐿,𝐻,𝑉

3.1

o Longitudinal emittance: 𝜀𝐿 = 𝜋𝑝𝜎𝐵𝐿𝜎∆𝑝/𝑝 𝛽𝑐 −1 eVs

𝑝 is the momentum in eV/c



IBS effects in the SLHC

06/11/2015 63

IBS & LHC (7 TeV)

o A constant beam intensity for the duration of the beam storage period is assumed in the computations.
o The next 2 figures show the evolution of the longitudinal & horizontal emittances over a 10 hours beam coast.
o IBS growth-rates 𝜏𝐿,𝐻,𝑉

−1 were calculated iteratively by step ∆𝑡 of 5 minutes updating the emittances at each iteration 𝑖:

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑖 = 𝑖 + 1 𝜏𝐿,𝐻,𝑉
−1 𝑖 + 1 = 𝑑 ln 𝜀𝐿,𝐻,𝑉 𝑖 /𝑑𝑡𝜀𝐿,𝐻,𝑉 𝑖 + 1 = 𝜀𝐿,𝐻,𝑉 𝑖 𝑒∆𝑡/𝜏𝐿,𝐻,𝑉(𝑖)



IBS & synchrotron radiation damping effects in the SLHC
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IBS & LHC (7 TeV)

o The synchrotron radiation turns into a visible effect for the LHC/SLHC proton beams at 7 TeV collision energy. Emittances shrink
with damping times of: 𝟏𝟐. 𝟗 h in the longitudinal and 𝟐𝟔. 𝟎 h in the 2 transverse planes.

o Synchrotron radiation damping (SRD) is modelled substituting in the previous formula 𝜏𝐿,𝐻,𝑉 𝑖 by 𝜏𝐿,𝐻,𝑉
−1 𝑖 − 𝜏srd𝐿,𝐻,𝑉

−1
−1

o The next 3 figures show the evolution of the longitudinal & transverse emittances over a 10 hours beam coast.
o SRD dominates the IBS growth in the longitudinal & vertical planes for the 4 cases, in horizontal the emittance damps over the all

coast only for case 1 while, for cases 2-4 it grows at some point in time during the coast.
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𝜏𝐿,𝐻,𝑉
−1 𝑖 − 𝜏srd𝐿,𝐻,𝑉

−1
−1

𝜏𝐿,𝐻,𝑉 𝑖



IBS & synchrotron radiation damping effects in the SLHC
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IBS & LHC (7 TeV)

Table: Emittance changes after a 10 hours beam coast resulting from the effects of IBS and synchrotron radiation damping

∆𝜀𝐿/𝜀𝐿 ∆𝜀𝐻/𝜀𝐻 ∆𝜀𝑉/𝜀𝑉
1st case Initial IR triplet -36% -20% -32%

2nd case
IR phase 1 triplet  (𝛽∗ = 0.30 m)
reduced emittance

-27% -5% -32%

3rd case 
Ultimate N𝑏 (𝛽∗ = 0.25 m)
reduced emittance

-19% 3% -32%

4th case
>Ultimate N𝑏 (𝛽∗ = 0.15 m)
reduced emittance

-8% 14% -32%

IBS emittance changes after a 10 hours beam coast

o Longitudinal & vertical: cases 1-2-3-4: emittances of all the luminosity scenarios are kept within target specifications.
o Horizontal: emittances stay in requirements cases 1-2: (nominal 1034 & first IR upgrade 2 × 1034 cm−2s−1 luminosities,

case 3: ~3% blow-up expected (ultimate intensity 𝑁𝑏 = 2.36 × 1011) & case 4: ~14% (~1035 cm−2s−1peak luminosity).
Globally for most scenarios the evolution of emittances during the 10 hours coast is kept inside the design values

Conclusion
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ELENA deceleration cycle
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o 1st plateau: 4 bunches injection at 100 MeV/c from AD followed by beam cooling.

o 2nd plateau: Deceleration down to 35 MeV/c and cooling again. 

o 3rd plateau: Last deceleration down to 13.7 MeV/c, beam cooled down to emittances needed for ELENA experiments.

End of bunch 
rotation

End of cooling

300 ms where 
IBS is active 

Momentum
Beam intensity
Physical H,V (95%) 
∆p/p (95%)
Bunch length (95%)

 13.7 MeV/c
2.5 107 (1 bunch)
5 mm.mrad
3 10-4

10.1 m (circumf/3)

Momentum (energy)
Bunch intensity
Physical H,V (95%) 
∆p/p (95%)
Bunch length (95%)

13.7 MeV/c (100 keV)
6.25 106 (4 bunches)
4 mm.mrad
3 10-4

1.3 m

IBS & ELENA (100 keV)

ELENA ring

ELENA (Extra Low Energy Antiproton) 
is a compact ring for cooling and more 
deceleration of 𝟓. 𝟑 MeV antiprotons
sent by the Antiproton Decelerator to 
give dense beams at 𝟏𝟎𝟎 keV energies
cf. ref. [22,23] 

30 m circumference

ELENA:  below transition ring  
𝜸 = 𝟏. 𝟎𝟎𝟎𝟏 < 𝜸𝒕~𝟏. 𝟗
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Ejection momentum/energy 13.7MeV/c 100 keV

Injected/ejected beam intensity 3 107 2.5 107

Number of extracted bunches 4

Extracted bunch intensity 6.25 106

Nominal beam parameter and variant study 
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𝜀𝐻,𝑉
𝑟𝑚𝑠 = 1𝑚, 𝜎∆𝑝/𝑝 = 0.325 𝑚 (75 𝑛𝑠), 𝜎∆𝑝/𝑝 = 0.075‰ (7.510−5) 𝜀𝐻,𝑉

𝑟𝑚𝑠 = 𝜋𝑝𝜎𝐿𝜎∆𝑝/𝑝 𝛽𝑐 −1

Initial nominal beam emittances with variants on the 100 keV plateau 

𝑩𝑳

m

𝑩𝑳𝟗𝟓%

m

𝝈∆𝒑/𝒑
‰ 

𝒑/𝒑𝟗𝟓%

‰

𝑳
𝒓𝒎𝒔

eVs

𝑳
𝟗𝟓%

eVs

𝜺𝑯,𝑽
𝒓𝒎𝒔

𝝁𝒎
𝜺𝑯,𝑽
𝟗𝟓%

𝝁𝒎

Nominal  beam 0.325 1.3 0.075 0.3
2.4 10-

4 9.6 10-4 1.0 4.0

Variant 1 0.325 1.3 0.025 0.1
0.8 10-

4 3.2 10-4 0.5 2.0

Variant 2 0.325 1.3 0.125 0.5
4.0 10-

4 16 10-4 2.5 10.0

IBS & ELENA (100 keV)
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Growth-rate 1/L vs (p/p, H ) 

for H = V & BL= 0.325 m

Growth-rate 1/H vs (H, V ) for 

p/p =0.075 ‰ & BL=0.325 m
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Longitudinal IBS 

IBS & ELENA (100 keV)

Growth-rate 1/V vs (H, V ) for 

p/p =0.075 ‰ & BL= 0.325 m

Horizontal IBS

Vertical IBS

Bjorken-Mtingwa
IBS calculation model
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IBS growth times evolution

ELENA initial rms beam emittances and IBS growth times at 100 keV ejection 

BL m p/p ‰ L eVs H m V m L ms H s V s

Nominal beam 0.325 0.075 2.4 10-4 1.0 1.0 2.40 0.67 -0.27

Variant 1 0.325 0.025 0.8 10-4 0.5 0.5 0.09 0.13 -0.04

Variant 2 0.325 0.125 4.0 10-4 2.5 2.5 24.0 5.92 -2.44

IBS & ELENA (100 keV)

0.0 0.2 0.4 0.6 0.8 1.0
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IBS growth times

V nominal

V variant 1

0.0 0.2 0.4 0.6 0.8 1.0
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4

0.01

1
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IBS growth times log plot

L  variant 1

L nominal

L variant 2

V variant 1H variant 2

0.0001

-10

-20

-30

IBS growth times IBS growth time log plots

IBS growth-times L,H,V evolution (𝜺𝑳 = 𝝅𝒑𝝈𝑩𝑳𝝈∆𝒑/𝒑 𝜷𝒄 −𝟏)
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IBS & ELENA (100 keV)
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Comments on variant performance & study extra variants

𝑩𝑳

m

𝑩𝑳𝟗𝟓%

m

𝝈∆𝒑/𝒑
 ‰

𝒑/𝒑𝟗𝟓%

‰

𝑳
𝒓𝒎𝒔

eVs

𝑳
𝟗𝟓%

eVs

𝜺𝑯,𝑽
𝒓𝒎𝒔

𝝁𝒎

𝜺𝑯,𝑽
𝟗𝟓%

𝝁𝒎

variant 3 0.325 1.3 0.250 1 8 10-4 32 10-4 1.0 4.0

variant 4 0.325 1.3 0.375 1.5 12 10-4 48 10-4 1.0 4.0

variant 5 0.325 1.3 0.500 2 16 10-4 60 10-4 1.0 4.0

Three more variant scenarios with higher relative momentum spreads  

Assuming one or several bunches circulate for ~1 s on the 100 keV plateau: the above plots show that none of the 3 
scenarios are fully satisfactory because the bunch length and momentum spread will suffer too much blow-up due to IBS: 

Nominal: bunch length and momentum spread growth after 1 s on the 100 keV plateau is Big !

BL(1s) =1.9 m , p/p(1s) =0.4 ‰ (95% bunch length=7.4 m instead of 1.3 m !)

Variant 1: bunch length and momentum spread increases after 1 s on the 100 keV plateau  is Huge !                     
BL(1s) =4.7 m, p/p(1s) =0.4 ‰ (95% bunch length=18.8 m !)

Variant 2:      bunch length and momentum spread increases after 1 s on the 100 keV plateau  is still too Large !        
BL(1s) =1.1 m, p/p(1s) =0.4 ‰ (95% bunch length=4.3 m !)

IBS & ELENA (100 keV)
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Additional IBS variant beam study

Plots of the beam parameter evolution for the three new variant scenarios

Evolution of the momentum spread and bunch length (left) and transverse emittances (right)

IBS & ELENA (100 keV)
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Summary of the IBS variant beam performance

BL(t)/BL(0) p/p(t)/p/p(0) L(t)/L (0) H(t)/H (0) V(t)/V (0)

Growth factor at t= 1 s 0.3 s 1 s 0.3 s 1 s 0.3 s 1s 0.3 s 1 s 0.3 s

Nominal beam 5.7 4.4 5.7 4.4 32.5 19.0 1.31 1.13 0.94 0.91

variant 1 14.5 11.3 14.5 11.3 205.0 125.3 1.25 1.54 1.05 0.92

variant 2 3.3 2.4 3.3 2.4 11.0 5.9 1.07 1.03 0.93 0.96

variant 3 2.19 1.75 2.19 1.75 4.78 3.04 1.65 1.29 1.15 0.98

variant 4 1.59 1.32 1.59 1.32 2.54 1.75 1.81 1.36 1.27 1.05

variant 5 1.30 1.13 1.30 1.13 1.69 1.29 1.92 1.40 1.38 1.12

IBS beam growth factor:  beam parameter at time 𝒕 over the initial one at 𝒕=𝟎 along the 100 keV plateau

The table shows that among the 3 new scenarios investigated the variant 5 is the best because the bunch length and 
momentum spread will suffer only 30% blow-up due to IBS after 1s on the 100 keV plateau (13% blow-up after 0.3s)

Nominal: the bunch length and momentum spread growth after 1 [s] on the 100 keV plateau is Big !

BL(1s) =1.9 m , p/p(1s) =0.4 ‰ (95% bunch length=7.4 m instead of 1.3 m at t=0 !)

Variant 5: the bunch length and momentum spread growth after 1 [s] looks Fine

BL(1s) =0.4 m, p/p(1s) =0.6 ‰ (95% bunch length=1.7m !)
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Epilogue

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

o Exchange of energies between horizontal & vertical 𝛽-oscillations & synchrotron oscillations due to IBS was first 
studied by Piwinski (1974) for weak-focussing storage rings ref. [3].

o The derivatives of the amplitude function & dispersion 𝛽𝑥
′ & 𝐷𝑥

′ were implemented into a CERN code by Piwinski
& Sacherer (1977) and used for rise-time calculations in diverse proton storage rings ref. [4].

o Likewise strong-focussing IBS rise-times were afterward derived by Bjorken-Mtingwa (1983) using a quantum 
electrodynamic theory approach, giving a new, broad and smart description of IBS theory ref. [8,11].

o Next IBS theory was extended by Piwinski (1990) to include a linear coupling (skew quads or solenoids) between 
horizontal & vertical 𝛽-oscillations (mixing the derivatives of vertical 𝛽𝑧

′ -function & dispersion 𝐷𝑧
′ in his theory).

o Between 2005 & 2012 the vertical lattice functions 𝛽𝑧
′ and 𝐷𝑧

′ were incorporated in the Bjorken-Mtingwa theory
by Zimmermann ref. [14]. Mathematica Notebooks were written accordingly by diverse persons.

o Besides, Bane (2002) & Kubo, Mtingwa, Wolski (2005) adapted the Piwinski IBS theory to get growth times at high 
energies comparable to those of Bjorken-Mtingwa: yielding the Completely Integrated Modified Piwinski (CIMP) 
ref. [12,13]. Also, Mtingwa (2008) developed a fast computation estimate of the emittance growth rates for flat 
𝑒+ & 𝑒− beams at high energy ref. [16], (e.g. aimed at damping rings and synchrotron light sources).

o The IBS growth times with linear coupling was applied to the generalized emittances specified by way of the 𝛽-
oscillation eigenvectors (e.g. as calculated by MADX). The process was fully implemented into a Mathematica 
Notebook in 2012 ref. [18] and used for ELENA antiproton deceleration studies at 100 keV energy. 
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 Appendices: Feynman rules



𝑒−𝑒−

𝑒− 𝑒−

𝛾

𝑝1 𝑝1
′

𝑝2
′𝑝2

sp
a
ce

time

𝑞=𝑝1
′−𝑝1

𝑝1
′

𝑝1

𝑝2

𝑝2
′
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o Feynman diagrams: symbolic & qualitative description of elementary particle interactions (also show 
graphically the approximations of the S-matrix elements got by perturbative series expansion).

o Particles: are lines with arrows in space-time, time flows from left to right (or bottom to top), space
direction is at right angles to the time direction (antiparticles travel backwards in time).

o Arrows: show the charge flux relative to time, where wavy lines represent virtual particles are bosons
that mediate the interaction between the particles, and which are created (emitted) and annihilated 

soon after (e.g. photons). Virtual particles do not have mass of real particles: 𝑚2≠𝐸2−𝒒2 (𝑚=0 for 𝛾).
o Loops: are closed patterns of virtual particles (in diagrams with high-order terms of the perturbative

S-matrix’s expansion power series).

Fig. caption: Feynman diagram for electron–electron (𝑒−) scattering; the left-hand side of the 
diagram shows the initial state, the right-hand side the final one. The wavy line linking the 2 vertices 
belongs to neither the initial nor the final state, it illustrates “how the interaction occurs”. The 
intermediate photon 𝛾 is virtual. Dashed lines show the diagram for exchange 𝑒−𝑒− scattering.

Case: 2-body scattering in CM frame

Appendix 1: Feynman diagrams for QED

Actually there are 2 Feynman diagrams as the 2 emerging 𝑒− are undifferentiated, but the 2 incident 𝑒− stay 
the same. So the 2 diagrams for direct and exchange 𝑒−𝑒− scattering mirror the full process (cf. Eq. 2.41-2.43)
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1. Label: draw a line for each inward/outward external particle momenta 𝑝1,2≝𝑝1,2
𝜇 & 𝑝1,2

′ ≝𝑝′
1,2
𝜇

and the 

internal momentum 𝑞≝𝑞𝜇, with 𝑞=𝑝1
′−𝑝1 (i.e. momentum transfer carried by an exchanged boson).

2. Vertex: for each one give a factor −i𝑔E(i= −1), their products is −𝑔E
2, 𝑔E is the coupling constant.

3. Propagator: give to the single internal wavy line a factor 𝑓(𝑞)=i/𝑞2 for boson with spin-0 and zero 
mass (mimicked a photon 𝛾). 𝑓(𝑞) acts for the momentum propagation among the 2 electrons in the 
interaction time, via a virtual photon. The global product is −i𝑔E

2𝑓(𝑞) = −i𝑔E
2/𝑞2.

4. 4-momenta conservation: write a 𝛿-function at each vertex (put a +/− sign on the 𝑝1,2, 𝑝1,2
′ , 𝑞 if the 

arrow points in/out a vertex). The above diagram gives: 2𝜋 4𝛿4 𝑝1−𝑝1
′+𝑞 & 2𝜋 4𝛿4 𝑝2−𝑝2

′ − 𝑞 .
5. Momenta integration: multiply the 𝛿-functions together. Fix 𝑞 ↦ 𝑝1

′ − 𝑝1 in the 2nd 𝛿-function and 
integrate the 1st 𝛿-function over the internal 4-momentum 𝑞 with d4𝑞/ 2𝜋 4. 

6. Cancel: the left over 𝛿-function is cut off, the result is multiply by i, the product is ℳ. 

Note: the 4-energy-momentum formula 𝑝1,2
2 = 𝐸1,2

2 − 𝒑1,2
2 ≡ 𝑚1,2

2 is valid for real particles but is violated for the transitional states bosons, 

called virtual particles, i.e. 𝑞2 = 𝐸2 − 𝒒2 ≠ 𝑚2 (𝑚=0 for physical photons). This is by virtue of the Heisenberg uncertainty principle ∆𝐸∆𝑡≈ℏ, 
as long as the virtual particle of energy 𝐸 last only for a tiny time ∆𝑡 ≲ ℏ/𝐸. So, the calculations of scattering processes are based on real and 
virtual particles to yield true results. 

Case: 2-electrons elastic scattering in CM frame

ref. L,M,O,P,R

Basic rules for a toy model used for the easiest 
diagrams with a single internal momentum (no 

loop which denotes perturbation terms) 

Appendix 2: Feynman rules for spinless particles & bosons 
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Case: 2-electrons elastic scattering in CM frame (ref. L,M,N,O,P,Q,R,S)

o For two-body scattering in the CM frame with all 4 particle masses 
even, the differential cross section can be cast as Eq. A.1 (obtained  
via the Fermi’s Golden rule, ref. [M,O,Q]).

𝑑 ത𝜎

𝑑ഥΩ
CM

=
ℳ 2

64𝜋2 𝐸1 + 𝐸2
2

o Fig. caption: kinematics of electron-electron scattering. The QED process amplitude ℳ=ℳ1-ℳ2 (not +) 
writes as follows, with 𝑔E

4= 4𝜋𝛼E
2=𝑒4 in HL units. The 1st & 3rd terms in the brace are the amplitudes 

ℳ1 & ℳ2 of the single Feynman diagrams (cf. Eq. 2.41), the 2nd (mid) term gives the coupling strength:

o As 𝒑1=−𝒑2 & 𝒑1
′=𝒑2

′ for elastic collision of 2 electrons (of mass 𝑚), the next expressions hold:

𝑒− 𝒑1

𝑒− 𝒑2
𝑒− 𝒑2

′

𝑒− 𝒑1
′

ത𝜓CM ℳ 2=
𝑒4

4
32 ቊ

𝑝1∙𝑝2
2 + 𝑝1∙𝑝2

′ 2 + 2𝑚2 𝑚2 − 𝑝1∙𝑝1
′

𝑝1 − 𝑝2
′ 2 2

𝐸1=𝐸1
′=𝐸2=𝐸2

′≝𝐸 𝒑1 = 𝒑1
′ = 𝒑2 = 𝒑2

′ ≝ 𝒑 with 𝒑2=𝐸2−𝑚2 and for ultrarelativistic limit 𝐸 ≫ 𝑚: 𝒑2 ≈ 𝐸2

𝑝1∙𝑝2 = 𝑝1
′ ∙𝑝2

′ = 𝐸2+𝒑2≈2𝐸2 𝑝1∙𝑝1,2
′ =𝐸2∓𝒑2cos ത𝜓≈𝐸2 1 ∓ cos ത𝜓 𝑝1 − 𝑝1,2

′ 2
=− 2𝒑2 1∓cos ത𝜓 ≈− 4𝐸2൝

sin2 ഥ𝜓/2

cos2 ഥ𝜓/2

Appendix 3: Feynman rules for QED
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′
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′
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ℳ 2=
2𝑒4

𝒑4
ቊ
𝐸2 + 𝒑2 2 + 𝐸2 + 𝒑2cos ത𝜓 2 − 2𝑚2𝒑2 1−cos ത𝜓

1−cos ത𝜓 2
+ 2

𝐸2 + 𝒑2 2 − 2𝑚2 𝐸2 + 𝒑2

sin2 ത𝜓

o The 4-momenta scalar products and square differences Eq. A.2 are changed with those of Eq. A.3 giving:

𝑑 ത𝜎

𝑑ഥΩ
CM UR

=
ℳUR

2

64𝜋2 2𝐸 2 =
𝑒4
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1
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+

1
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+ 1

≡
𝑒4

64𝜋2𝐸2
3 + cos2 ത𝜓 2

sin4 ത𝜓

𝑒− 𝑝1

𝛾 𝑞=𝑝2
′−𝑝1

𝑒− 𝑝2

𝑒− 𝑝2
′

𝑒− 𝑝1
′

ℳ2−

o The differential cross section for unpolarised initial states & ultrarelativistic limit 𝐸 ≫ 𝑚 follows placing 
Eq. A.4 ℳUR

2 in Eq. A.2 yielding the Mӧller scattering formula for ℳUR:

Compare the QED Eq. A.5 with the toy model Eq. 2.43
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ℳ 2
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1

sin4 ത𝜓

ℳ2 is due to the identity 
of the two scattered 𝑒−

Appendix 3: Feynman rules for QED

Case: 2-electrons elastic scattering in CM frame (ref. L,M,N,O,P,Q,R,S)
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