BEAM LOSS CONSEQUENCES

Francesco Cerutti

on Intensity Limitations in Particle Beams

CERN November 2015

BEAM LOSSES

- on beam intercepting devices (targets, collimators, dumps, stoppers, stripping foils, …)
	- regular
	- accidental: smearing failures, injection mis-steering, asynchronous beam dump, top-off
- diffused
	- synchrotron radiation, beam-gas interaction, gas bremsstrahlung
- debris from regular collisions at the interaction points
- on unexpected obstacles (UFO, ULO, …)

the microscopic view INTERACTION WITH (ACCELERATOR) MATERIAL:

interplay of many physical processes described by different theories/models

the macroscopic view INTERACTION WITH ACCELERATOR MATERIAL:

 $LINAC4$ and LHC proton beam on a 1 m long and 10 cm radius copper rod

CONSEQUENCES

Radiation Monitors (RadMon) thermal neutron and high energy hadron fluence

CERN Accelerator School **F. Cerutti** Nov 10, 2015

Tumor cell destruction energy deposition (dose, biological dose)

ENERGY LOSS BASICS [I]

mean energy loss rate C. Amsler et al., Phys. Lett. B667 (2008) 1 μ^+ on Cu Stopping power [MeV cm $^{2/g}$]
 $\frac{1}{6}$ Radiative Bethe-Bloch Andersonionization Ziegler indhard Scharff **bremsstrahlung** $E_{\mu c}$ Radiative Radiative Minimum osses effects reach 1% ionization Nuclear losses Without δ $10^5\,$ 0.001 0.01 0.1 $10\,$ 100 1000 ∧ $10⁴$ 10^{6} $\mathbf{1}$ $\beta\gamma$ 0.1 $\mathbf{1}$ 10 100 $\overline{1}$ 10 $100\,$ $\vert 1 \vert$ 10 100 $[GeV/c]$ $[TeV/c]$ $[MeV/c]$ Muon momentum 20 MeV for e ⁻ on Cu

- shell, Barkas, Mott corrections
- effective charge for low energy high Z ions

3 MeV PROTON DUMP

HIGH Z ION BEAMS 350 MeV/n ²³⁸U

HIGH ENERGY PROTON BEAMS

target

Beam particles cannot come to rest and are lost by nuclear non-elastic interaction …

inelastic scattering length

 $\overline{}$

$$
\lambda \rho = \frac{A}{\sigma_R N_A} \qquad \sigma_R \simeq \pi r_0^2 A^{2/3}
$$

multiple Coulomb scattering

 $\theta_0 = \frac{13.6 \text{ MeV}}{\beta c \rho} z \sqrt{x/X_0} [1 + 0.038 \log(x/X_0)]$

beam protons

 $P^{in}(x) = 1 - \exp(-x/\lambda)$

Gaussian width (for small deflection angles)

… generating neutral pions whose decay initiates electromagnetic showers

radiation length

$$
X_0 \rho \simeq \tfrac{716.4 \, g \, \text{cm}^{-2} \, \text{A}}{Z(Z+1) \log(287/\sqrt{Z})}
$$

Molière radius

 $R_M = X_0 E_s/E_c$

high energy electrons and photons

$$
E_e^{\ell}(x) = E_0 (1 - \exp(-x/X_0))
$$

\n
$$
P_{\gamma}^{e^- e^+}(x) = 1 - \exp(-7x/9X_0)
$$

electromagnetic showers

 $E_s = 21.2 \, MeV$

 $E_c = 800 \text{ MeV}/(Z + 1.2)$

HADRONIC AND ELECTROMAGNETIC SHOWERS

ENERGY DEPOSITION

5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR [I]

Intensity: 1.3 10¹¹ p and Beam size: 1.75 µm rad norm. emittance (0.3 mm σ_x and 0.19 mm σ_y)

5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR [I]

Intensity: 1.3 10¹¹ p and Beam size: 1.75 µm rad norm. emittance (0.3 mm σ_x and 0.19 mm σ_y)

Intensity: 1.3 10¹¹ p 5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR [III]

Beam size: 1.75 μm rad norm. emittance (0.3 mm $\sigma_{\rm x}$ and 0.19 mm $\sigma_{\rm y}$)

6.5 TeV PROTON BEAM REGULAR CLEANING

Cumulated losses: 1.15 10¹⁶ p per year on the betatron cleaning insertion collimators

THE LHC 14 TeV CoM COLLISION DEBRIS

540

MARGIN TO QUENCH

- IR1 triplet (Q2a) reaches the design limit at nominal luminosity

peak dose [MGy] after 300 fb-1 , relevant for triplet (i.e. coil insulator) lifetime

DISPLACEMENTS **P**ER **A**TOM

It is a "measure" of the amount of radiation damage in inorganic materials

0.3 dpa means that on average 3 atoms out of 10 have been displaced once from their site within the structural lattice

HYDROGEN AND HELIUM GAS PRODUCTION

Spallation reactions induced by protons, neutrons, pions, … produce a variety of particles including protons (1 H), deuterons (2 H), tritons (3 H), 3 He, and alphas (4 He). The least energetic of these products (which are also the most abundant) can stop in the target assembly giving rise to a **hydrogen and helium buildup**.

These gases can lead to grain boundary embrittlement and accelerated swelling.

In the case of the CNGS target, for 1.4×10^{20} protons on target one expects about 4 10^{21} H atoms. Assuming that all H atoms are desorbed from the target solid structures, this corresponds to \sim 150 ml of atomic H at atmospheric pressure (75 ml if we assume they combined into molecules).

REDOX

Ionising radiation creates radicals chemically active

PVC dehydrochlorination by X and γ -rays

Cl-ions react with water droplets and create a very corrosive environment

Ball bearings exposed to hadronic showers in air

OZONE PRODUCTION

$$
C_{O_3} = \frac{C_{O_2}GP_{eV}\tau}{N_{Av} \left(\frac{\rho_{Air}V}{A_{Air}}\right)} \left(1 - e^{-\frac{t}{\tau}}\right)
$$

$$
\tau = (\alpha + 1/\tau_{vent})^{-1} \quad \alpha = 2.3 \cdot 10^{-4} \text{ [s}^{-1} \text{]} \quad O_3 \text{ dissociation constant}
$$

$$
C_{O_2} = 0.232 \frac{G = 0.06 - 0.074 \text{ [O}_3/eV]}{G = 0.06 - 0.074 \text{ [O}_3/eV]} \quad N_{Av} \frac{\rho_{Air}}{A_{Air}} \text{ @ NTP} = 2.50 \cdot 10^{19} \text{ [molecules/cm}^3 \text{]}
$$

$$
P_{eV} \text{ [eV/s]} = 6.24 \cdot 10^{18} \text{ P[W]} \qquad \tau = \frac{1}{\tau_{vent}} \text{ [air renewal/s]}
$$
deposited power
$$
C_{O_3} \text{[ppm]} = 9.28 \cdot 10^{-15} \text{ G} \text{ [eV}^{-1} \text{]} \quad \frac{P_{eV} \text{ [eV/s]} \tau \text{ [s]}}{V \text{[cm}^3]} \left(1 - e^{-\frac{t}{\tau}}\right)
$$

under the assumption of no O_3 decomposition (yielding in the τ expression a neglected term kP_{eV} with k decomposition constant equal to 1.4 10^{-16} cm³/eV)

ELECTRONICS FAILURES [I]

CNGS 2007 physics run, 8 10¹⁷ protons on target delivered (\approx 2% of a nominal CNGS year)

Gy per $4.5 10^{19}$ p.o.t.

Predicted dose levels

[in agreement with measurements]

Single event upsets in ventilation electronics caused

ventilation control failure and interruption of communication

ELECTRONICS FAILURES [II]

collimator controls

counter 14.810 5924 0 1 0 1 1 1 0 0 1 0 0 1 0 0

MAIN RADIATION EFFECTS ON ELECTRONICS

HOW HIGH ENERGY HADRONS?

17 GeV ELECTRON BEAM ENVIRONMENT

MITIGATION/PREVENTION STRATEGY

identify forbidden regions

relocate design shielding

install radiation resistant equipment

FACILITY SHIELDING DESIGN

For **radiation protection** purposes, depending on the aspects to be considered,

particle fluence in a given location is transformed into *effective dose* or *ambient dose equivalent* (Sv)

through the use of respective sets of conversion coefficients, which are a function of particle type and energy.

Prompt dose equivalent outside a radiation facility, reflecting the relevant radiation level in a public space

during normal or accidental operation of the facility, is the quantity to minimize below acceptable limits.

ACTIVATION

A high energy nuclear reaction on a high Z nucleus fills roughly the whole charge and mass intervals of the nuclide chart

DELAYED RADIATION FROM RADIOACTIVE DECAY

Bateman equations

which are solved for a given *irradiation profile* at different *cooling times*

yielding (specific) activities $[Bq/(q)]$ – to be compared to legal exemption limits – and residual dose rates [uSv/h] by the decay radiation (mainly electromagnetic)

DURING SHUTDOWN

AIR ACTIVATION

The activity of an air radioisotope (⁷Be, ¹¹C, ¹³N, ¹⁵O, ³⁸Cl, ³⁹Cl, etc.) in the irradiation area at the end of the irradiation period T is $A_T = A_S (1 - \exp(-(\lambda + m_{on})T))$

where m_{on} is the relative air exchange rate during irradiation, i.e. the fraction of the air volume renewed per unit time

Amount of activity released into atmosphere all along the irradiation period (t_{on}) is the time taken by the air flux to reach the release point from the irradiated area)

$$
A_{on} = m_{on} A_S \left(T - \frac{1 - \exp\left(- (\lambda + m_{on})T \right)}{\lambda + m_{on}} \right) \exp\left(-\lambda t_{on} \right)
$$

Amount of activity released into atmosphere after the end of the irradiation $(m_{off}$ and t_{off} as m_{on} and t_{on} but referring to the shutdown period)

$$
A_{off} = A_T \frac{m_{off}}{\lambda + m_{off}} \exp\left(-\lambda t_{off}\right)
$$

CREDITS

In addition to explicit references, work of and material from

I. Besana, V. Boccone, M. Brugger, L.S. Esposito, A. Ferrari, A. Lechner, R. Losito, A. Mereghetti, N. Mokhov, S. Roesler, P.R. Sala, L. Sarchiapone, E. Skordis, A. Tsinganis, V. Vlachoudis

CERN FLUKA TEAM and FLUKA COLLABORATION CERN COLLIMATION TEAM, CERN MAGNET GROUP, and CERN RADIATION PROTECTION TEAM