BEAM LOSS CONSEQUENCES

Francesco Cerutti

on Intensity Limitations in Particle Beams

November 2015

BEAM LOSSES

- on beam intercepting devices (targets, collimators, dumps, stoppers, stripping foils, ...)
 - regular
 - accidental: smearing failures, injection mis-steering, asynchronous beam dump, top-off
- diffused
 - synchrotron radiation, beam-gas interaction, gas bremsstrahlung
- debris from regular collisions at the interaction points
- on unexpected obstacles (UFO, ULO, ...)

interplay of many physical processes described by different theories/models

INTERACTION WITH ACCELERATOR MATERIAL: the macroscopic view

LINAC4 and LHC proton beam on a 1 m long and 10 cm radius copper rod

CONSEQUENCES

rele	evant	macroscopic	quantity
------	-------	-------------	----------

Heating	energy deposition (integral power)	
Thermal shock	energy deposition (power density)	
Quenching	energy deposition (power density)	
Deterioration	energy deposition (dose), particle fluence, DPA	
Oxidation, radiolysis, ozone production	energy deposition	
Gas production	residual nuclei production	
Single event effects in electronic devices	high energy hadron fluence	
	[+ neutron fluence, energy deposition (dose)]	
Shielding requirements	particle fluence (<i>prompt</i> dose equivalent)	
Access limitations, radioactive waste, air activation	<i>residual</i> dose rate and activity	

Beam Loss Monitors (BLM)

Radiation Monitors (RadMon)

energy deposition

thermal neutron and high energy hadron fluence

Tumor cell destruction

CERN Accelerator School

energy deposition (dose, biological dose)

F. Cerutti

ENERGY LOSS BASICS [I]

mean energy loss rate

- shell, Barkas, Mott *corrections*
- effective charge for low energy high Z ions

3 MeV PROTON DUMP

CERN Accelerator School

F. Cerutti

HIGH Z ION BEAMS 350 MeV/n ²³⁸U

HIGH ENERGY PROTON BEAMS

target

Beam particles cannot come to rest and are lost by nuclear non-elastic interaction ...

inelastic scattering length

$$\lambda \rho = \frac{A}{\sigma_R N_A} \qquad \sigma_R \simeq \pi r_0^2 A^{2/3}$$

multiple Coulomb scattering

 $\theta_0 = \frac{13.6 \, \text{MeV}}{\beta \text{cp}} \, z \sqrt{x/X_0} \left[1 + 0.038 \log(x/X_0) \right]$

beam protons

 $P^{in}(x) = 1 - \exp(-x/\lambda)$

Gaussian width (for small deflection angles)

... generating neutral pions whose decay initiates electromagnetic showers

radiation length

$$X_0
ho \simeq rac{716.4 \, g \, cm^{-2} \, A}{Z(Z+1) \log(287/\sqrt{Z})}$$

Molière radius

 $R_M = X_0 E_s / E_c$

high energy electrons and photons

$$E_{e}^{\ell}(x) = E_{0} (1 - \exp(-x/X_{0}))$$
$$P_{\gamma}^{e^{-}e^{+}}(x) = 1 - \exp(-7x/9X_{0})$$

electromagnetic showers

 $E_s = 21.2 \, MeV$

 $E_c = 800 \, MeV/(Z+1.2)$

	ρ [g/cm ³]	Z	<i>X</i> ₀ [cm]	λ [cm]
Be	1.85	4	35.28	37.06
СС	1.77	6	24.12	42.09
AI	2.70	13	8.90	35.35
Ti	4.54	22	3.56	25.04
Fe	Fe 7.9		1.76	15.1
Cu 8.96		29	1.44	13.86
w	19.3	74	0.35	8.90

HADRONIC AND ELECTROMAGNETIC SHOWERS

ENERGY DEPOSITION

transversally integrated

[different from *peak density* profile, which depends on beam size]

5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR [I]

Intensity: 1.3 10¹¹ p

Beam size: 1.75 µm rad norm. emittance (0.3 mm σ_x and 0.19 mm σ_y)

5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR [I]

Intensity: 1.3 10¹¹ p

Beam size: 1.75 µm rad norm. emittance (0.3 mm σ_x and 0.19 mm σ_y)

5 TeV PROTON BUNCH ON TERTIARY COLLIMATOR Intensity: 1.3 10¹¹ p [III]

<u>Beam size</u>: 1.75 μ m rad norm. emittance (0.3 mm σ_x and 0.19 mm σ_y)

CERN Accelerator School

F. Cerutti

6.5 TeV PROTON BEAM REGULAR CLEANING

<u>Cumulated losses</u>: 1.15 10¹⁶ p per year on the betatron cleaning insertion collimators

THE LHC 14 TeV CoM COLLISION DEBRIS

54

DEBRIS CAPTURE IN THE "TRIPLET"

MARGIN TO QUENCH

peak dose [MGy] after 300 fb⁻¹, relevant for triplet (i.e. coil insulator) lifetime

- different behavior reflecting the crossing plane variation for the same magnetic configuration of the triplet (FDF in the horizontal plane for positively charged particles coming from the IP)
- IR1 triplet (Q2a) reaches the design limit at nominal luminosity

DISPLACEMENTS PER ATOM

It is a "measure" of the amount of radiation damage in inorganic materials

0.3 dpa means that on average 3 atoms out of 10 have been displaced once from their site within the structural lattice

HYDROGEN AND HELIUM GAS PRODUCTION

Spallation reactions induced by protons, neutrons, pions, ... produce a variety of particles including protons (¹H), deuterons (²H), tritons (³H), ³He, and alphas (⁴He). The least energetic of these products (which are also the most abundant) can stop in the target assembly giving rise to a **hydrogen and helium buildup**.

These gases can lead to grain boundary embrittlement and accelerated swelling.

In the case of the *CNGS target*, for 1.4 10^{20} protons on target one expects about 4 10^{21} H atoms. Assuming that all H atoms are desorbed from the target solid structures, this corresponds to ~150 ml of atomic H at atmospheric pressure (75 ml if we assume they combined into molecules).

REDOX

Ionising radiation creates radicals chemically active

PVC dehydrochlorination by X and γ -rays

CI⁻ ions react with water droplets and create a very corrosive environment

Ball bearings exposed to hadronic showers in air

F. Cerutti

OZONE PRODUCTION

$$C_{o_{3}} = \frac{C_{o_{2}}GP_{eV}\tau}{N_{Av}\left(\frac{\rho_{Air}V}{A_{Air}}\right)} \left(1 - e^{-\frac{t}{\tau}}\right) \qquad \tau = (\alpha + 1/\tau_{vent})^{-1} \qquad \alpha = 2.3 \cdot 10^{-4} \,[\text{s}^{-1}] \quad O_{3} \text{ dissociation constant}$$

$$C_{o_{2}} = 0.232 \qquad \boxed{G = 0.06 - 0.074 \ [\text{O}_{3}/\text{eV}]} \qquad N_{Av} \frac{\rho_{Air}}{A_{Air}} @ NTP = 2.50 \cdot 10^{19} \,[\text{molecules/cm}^{3}]$$

$$P_{eV} \,[\text{eV/s}] = 6.24 \cdot 10^{18} P[\text{W}] \qquad r = \frac{1}{\tau_{vent}} [\text{air renewal/s}]$$

$$\frac{deposited power}{C_{o_{3}} [\text{ppm}] = 9.28 \cdot 10^{-15} \,G[\text{eV}^{-1}]} \frac{P_{eV} \,[\text{eV/s}] \,\tau[s]}{V[\text{cm}^{3}]} \left(1 - e^{-\frac{t}{\tau}}\right) \qquad [\text{NCRP Report 51, LEP Note 379]}$$

under the assumption of no O₃ *decomposition* (yielding in the τ expression a neglected term kP_{eV}/V with *k* decomposition constant equal to 1.4 10⁻¹⁶ cm³/eV)

ELECTRONICS FAILURES [I]

CNGS 2007 physics run, 8 10^{17} protons on target delivered ($\approx 2\%$ of a nominal CNGS year)

Gy per 4.5 10¹⁹ p.o.t.

Predicted dose levels

[in agreement with measurements]

Single event upsets in ventilation electronics caused

ventilation control failure and interruption of communication

ELECTRONICS FAILURES [II]

collimator controls

14.810

counter

MAIN RADIATION EFFECTS ON ELECTRONICS

			relevant physical quantity the effect is scaling with
Single Event effects	Single Event Upset (SEU)	Memory bit flip (soft error) Temporary functional failure	High energy hadron fluence [cm ⁻²] (but also thermal neutrons!)
(Random in time)	Single Event Latchup (SEL)	Abnormal high current state Permanent/destructive if not protected	High energy hadron fluence [cm ⁻²]
Cumulative effects	Total Ionizing Dose (TID)	Charge build-up in oxide Threshold shift & increased leakage current Ultimately destructive	lonizing <mark>dose</mark> [Gy]
(Long term)	Displacement damage	Atomic displacements Degradation over time Ultimately destructive	Silicon 1 MeV-equivalent neutron fluence [cm ⁻²] {NIEL -> DPA}

HOW HIGH ENERGY HADRONS?

17 GeV ELECTRON BEAM ENVIRONMENT

MITIGATION/PREVENTION STRATEGY

identify forbidden regions

design shielding

install radiation resistant equipment

FACILITY SHIELDING DESIGN

For radiation protection purposes, depending on the aspects to be considered,

particle fluence in a given location is transformed into effective dose or ambient dose equivalent (Sv)

through the use of respective sets of conversion coefficients, which are a function of particle type and energy.

<u>Prompt dose equivalent</u> outside a radiation facility, reflecting the relevant radiation level in a public space

during normal or accidental operation of the facility, is the quantity to minimize below acceptable limits.

ACTIVATION

A high energy nuclear reaction on a high Z nucleus fills roughly the whole charge and mass intervals of the nuclide chart

DELAYED RADIATION FROM RADIOACTIVE DECAY

Bateman equations

which are solved for a given *irradiation profile* at different *cooling times*

yielding (specific) activities [Bq(/g)] – to be compared to legal <u>exemption limits</u> – and residual dose rates [uSv/h] by the decay radiation (mainly electromagnetic)

AIR ACTIVATION

The activity of an air radioisotope (⁷Be, ¹¹C, ¹³N, ¹⁵O, ³⁸Cl, ³⁹Cl, etc.) in the irradiation area at the end of the irradiation period T is A = A = (1 - 1) (1

 $A_T = A_S \left(1 - \exp\left(-(\lambda + m_{on})T \right) \right)$

where m_{on} is the relative air exchange rate during irradiation, i.e. the fraction of the air volume renewed per unit time

Amount of *activity released into atmosphere all along the irradiation period* $(t_{on}$ is the time taken by the air flux to reach the release point from the irradiated area)

$$A_{on} = m_{on} A_S \left(T - \frac{1 - \exp\left(-(\lambda + m_{on})T\right)}{\lambda + m_{on}} \right) \exp\left(-\lambda t_{on}\right)$$

Amount of *activity released into atmosphere after the end of the irradiation* $(m_{off} \text{ and } t_{off} \text{ as } m_{on} \text{ and } t_{on}$ but referring to the shutdown period)

$$A_{off} = A_T \frac{m_{off}}{\lambda + m_{off}} \exp\left(-\lambda \ t_{off}\right)$$

CREDITS

In addition to explicit references, work of and material from

I. Besana, V. Boccone, M. Brugger, L.S. Esposito, A. Ferrari,A. Lechner, R. Losito, A. Mereghetti, N. Mokhov, S. Roesler,P.R. Sala, L. Sarchiapone, E. Skordis, A. Tsinganis, V. Vlachoudis

CERN FLUKA TEAM and FLUKA COLLABORATION CERN COLLIMATION TEAM, CERN MAGNET GROUP, and CERN RADIATION PROTECTION TEAM