Needs for High Intensity and High Brightness

Lenny Rivkin

Paul Scherrer Institute (PSI) and Swiss Federal Institute of Technology Lausanne (EPFL)

The Role of Accelerators in Physical and Life Sciences

"It is an historical fact that scientific revolutions are more often driven by new tools than by new concepts"

Freeman Dyson

Particle colliders

Collider Luminosity, rate of interactions

High probability or the rate of collisions require high intensity and small beams

$$\mathcal{L} = f \frac{N^2}{A} \left[\frac{1}{cm^2 \cdot s} \right] \qquad R = \frac{dn}{dt} = \mathcal{L} \cdot \sigma_{\text{int}}$$

Need for high brightness hadron beams

- ion sources
- preserving it through the acceleration cycle

High energy colliders: luminosity challenge

High energy frontier exploration requires high luminosity at high energy (and thus high **intensity** and **beam power**)

• to overcome Signal to Noise in hadron colliders

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Lengthen the luminous region?

LHC INTEGRATED LUMINOSITY

CMS Integrated Luminosity, pp

HL-LHC *ultimate performance*

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
→ main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km infrastructure in Geneva area
- e+e collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

Hadron collider parameters

Parameter	FCC-hh		SPPC	LHC	HL LHC
collision energy cms [TeV]	100		71.2	14	
dipole field [T]	16		20	8.3	
# IP	2 main & 2		2	2 main & 2	
bunch intensity [10 ¹¹]	1	1 (0.2)	2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	25	12	1	5
events/bx	170	850 (170)	400	27	135
Iuminous region RMS [cm]	5.7	5.7			
normalised emittance [µm]	0.44	2.2		3.75	2.5
stored energy/beam [GJ]	8.4		6.6	0.36	0.7
synchr. rad. [W/m/apert.]	30		58	0.2	0.35

Unprecedented beam power

• 8GJ stored energy / beam

ee H

- Airbus A380 at 700km/h
- 24 times larger than in LHC at 14TeV
- Can melt 12t of copper
- Or drill a 300m long hole
- \Rightarrow Machine protection
- \Rightarrow Beam dumping
- Any beam loss important
 - E.g. beam-gas scattering, non-linear dynamics
 - Can quench arc magnets
 - Background for the experiments
 - Activation of the machine
 - \Rightarrow Collimation system
 - \Rightarrow Transfer and injection

History of ring colliders luminosity

Next generation B-factory SuperKEKB

Low emittance lattice

Circular colliders: intensity challenges

To achieve the design luminosity (examples):

- extreme stored beam power
- large number of bunches
- beam lifetime, including luminosity lifetime
- emittance preservation from source to collisions

Luminosity: linear colliders

 H_D – beam-beam enhancement factor

Synchrotron radiation in the collective field of the bunch

Center of mass collision energy is not well defined

Backgrounds: direct synchrotron radiation

Backgrounds: pair production from high energy photons

High energy: high wall plug power

Linear colliders: intensity challenges

To achieve the design luminosity (examples):

- extremely small (nm) beam sizes at IP
- good control of beamstrahlung and energy spread
- extremely small normalised emittance
- demanding damping rings
- emittance preservation from damping rings to IP

X-Ray sources

60'000 SR users world-wide

The "brightness" of a light source:

Particle beam emittance:

Bright beams of particles: phase space density

Incoherent, spontaneous emission of light:

Coherent, stimulated emission of light

Large phase space

COHERENT EMISSION BY THE ELECTRONS

Intensity $\propto N$

INCOHERENT EMISSION

Intensity \propto N ²

COHERENT EMISSION

MUCH HIGHER BRIGHTNESS CAN BE REACHED WHEN THE ELECTRONS COOPERATE

INCOHERENT EMISSION

SwissFEL 2017

Accelerator on a chip

Accelerator on a chip

The Economist

The storage ring generational change

A revolution in storage ring technology

Pioneer work: MAX IV (Lund, Sweden)

Emittance reduction from nm to 10...100 pm range

(PAL -

High intensity hadron beams

High intensity hadron facilities

Ion source from Saclay: 140 mA

	tor has been commis	nstalled in toning sta	Rotatas rted		
Requirements	Target value				25
Particles	D+			KA	
Output energy	100 keV				
Output D ⁺ current	140 mA				
Normalized rms	0.25 π.mm.mrad				1
transverse emittance				COR A	12 \$
Duty factor	CW				81
	2 HB - H -				

Testing materials for ITER and future fusion reactors

Yoshikazu OKUMURA

Proton beam with highest intensity: 1.4 MW

history of maximum beampower

1974 planned: 100uA today: 2.400uA [routine: 2.200uA]

Intensity limit: beam losses

(PA) –

Beam halo monitoring

Coronagraph for beam halo measurement

ADS systems

Transmutation of nuclear waste isotopes or energy generation

Major challenges for accelerator technology in terms of beam power (>10MW) and reliability

Suzie Sheehy

Medical applications

Medical applications: sharp particle knives

Bragg peak

SPOT SCANNING

Aim of proton therapy: Dose concentrated in the tumor volume, low dose or no dose to healthy tissues

Intensity in a small phase space volume

Thank you for your attention

SINQ

INTERNATIONAL YEAR OF LIGHT 2015