Wakefields and Impedances I

An Introduction

R. Wanzenberg M. Dohlus

Introduction

- Wake Field = the track left by a moving body (as a ship) in a fluid (as water); broadly : a track or path left
- Impedance = Fourier Transform (Wake Field)

Electric Field of a Bunch

Effects on a test charge

Change of energy
$$\Delta \mathcal{E}(s) = q_2 \int dz \, E_z(r, z, t = (s+z)/c)$$

Bunch charge q_1 Test charge q_2

Equation of motion

$$q_1: \quad z = c t$$
$$q_2: \quad z = c t - s$$

 $E_z(r, z, t)$ depends on the total bunch charge

Wakepotential

Wake: point charge versus bunch

Longitudinal Wakepotential

Point charge

$$W_{||}(s) = \frac{1}{q_1} \int dz \, E_{z,p.c.}(r, z, t(s, z))$$

Bunch

$$\mathcal{W}_{||}(s) = \frac{1}{q_1} \int dz \, E_z(r, z, t(s, z))$$

$$\mathcal{W}_{\parallel}(r_{2\perp},s) = \int_0^\infty ds' \,\lambda(s-s') \,W_{\parallel}(r_{2\perp},s')$$

The fields *E* and *B* are generated by the charge distribution ρ and the current density *j*. They are solutions of the Maxwell equations and have to obey several boundary conditions.

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} + \frac{1}{c^2} \frac{\partial}{\partial t} \boldsymbol{E}$$
 $\nabla \cdot \boldsymbol{B} = 0$ $\boldsymbol{j} = c \boldsymbol{u}_z \rho$

$$\boldsymbol{\nabla} \times \boldsymbol{E} = -\frac{\partial}{\partial t} \boldsymbol{B} \qquad \qquad \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{1}{\epsilon_0} \rho \qquad \qquad \rho = q_1 \, \lambda_\perp \, \lambda \qquad \lambda(z) = \frac{1}{\sigma \, \sqrt{2 \, \pi}} \, \exp\left(-\frac{z^2}{2\sigma^2}\right) \, dz$$

Approximations

Wake Field Rigid beam approximation

- The wake field does not affect the motion of the beam
- The wake field does not affect the motion of the test charge (only the energy or momentum change is calculated)

The interaction of the beam with the environment is not self consistent.

Nevertheless, one can use results from wake field calculations for a turn by turn tracking code - sometimes cutting a beam into slices.

Catch-up distance

Catch-up distance z_c

$$\frac{z_c + d}{c} = t = \frac{\sqrt{z_c^2 + b^2}}{c} \qquad z_c = \frac{b^2 - d^2}{2d} = \frac{b^2}{2d} - \frac{d}{2}$$

Example:

 $z_c \approx 75 \text{ mm}$ $b = 35 \text{ mm}, d \approx 2 \sigma_z = 8 \text{ mm}$ R = 60 mm, L = 50 mm

R. Wanzenberg | Wakefields and Impedances I | CAS, Nov. 2015 | Page 8

 $\lim_{d \to \text{small}} z_c = \text{LARGE}$

Numerical Calculations

There exist several numerical codes to calculate wakefields. Examples are:

Non commercial codes (2D, r-z geometry)

• ABCI, Yong Ho Chin, KEK

http://abci.kek.jp/abci.htm

Echo 2D, Igor Zagorodnov, DESY

http://www.desy.de/~zagor/WakefieldCode_ECHOz/

Commercial codes (3D)

- GdfidL
- CST (Particle Studio, Microwave Studio)

The Maxwell equations are solved on a grid

Example: wakepotential of a cavity

Numerical calculation of the wakepotential with CST Particle Studio:

Loss Parameter

Wakepotential

$$\mathcal{W}(s) = \frac{1}{q_1} \int dz \, E_z(r, z, (s+z)/c)$$

Line charge density

$$\lambda(s) = \frac{1}{\sigma_z \sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{s^2}{\sigma_z^2}\right)$$

Total loss parameter

$$k_{tot} = \int ds \,\lambda(s) \,\mathcal{W}(s)$$

Energy loss

$$\Delta \mathcal{E} = P = q_{bunch}^2 k_{tot}$$

$$\Delta \mathcal{E} = (16 \,\mathrm{nC})^2 \,0.46 \,\frac{\mathrm{V}}{\mathrm{pC}} = 0.118 \,\mathrm{mVC}$$

Bunch population $N = 10 \cdot 10^{10}$, PETRA $C = 2304 \text{ m}, T = 7.68 \mu \text{s}$ $P = \frac{1}{T} \Delta \mathcal{E} = 15.2 \text{ W}$

R = 6 cm, pipe radius 3.5 cm

Transverse Wake Fields

Lorentz Force $\boldsymbol{F}(\boldsymbol{r_2},t) = q_2\left(\boldsymbol{E}(\boldsymbol{r_2},t) + \boldsymbol{v} \times \boldsymbol{B}(\boldsymbol{r_2},t)\right)$

Longitudinal Wakepotential

$$\mathcal{W}_{||}(\mathbf{r_{2\perp}},s) = \frac{1}{q_1} \int dz \, E_z(\mathbf{r_{2\perp}},z,(s+z)/c)$$

Wakepotential

$$\mathcal{W}(\mathbf{r}_{2\perp},s) = \frac{1}{q_1} \int_{-\infty}^{\infty} dz [\mathbf{E}(\mathbf{r}_{2\perp},z,t) + c \, \mathbf{e}_z \times \mathbf{B}(\mathbf{r}_{2\perp},z,t)]_{t=(s+z)/c}$$

Change of momentum of a test charge q_2

$$\Delta \boldsymbol{p}(\boldsymbol{r_{2\perp}},s) = \frac{1}{c} q_2 q_1 \boldsymbol{\mathcal{W}}(\boldsymbol{r_{2\perp}},s)$$

kick on an electron (q_2) due to the bunch charge q_1

$$\boldsymbol{\theta}(\boldsymbol{r_{2\perp}},s) = rac{e}{E} q_1 \boldsymbol{\mathcal{W}}_{\perp}(\boldsymbol{r_{2\perp}},s)$$

Transverse Wakepotential

$$\mathcal{W}_{\perp}(\mathbf{r}_{2\perp},s) = \frac{1}{q_1} \int_{-\infty}^{\infty} dz [\mathbf{E}_{\perp}(\mathbf{r}_{2\perp},z,t) + c \, \mathbf{e}_z \times \mathbf{B}_{\perp}(\mathbf{r}_{2\perp},z,t)]_{t=(s+z)/c}$$

Bunch charge q_1 Test charge q_2 Equation of motion:

 $q_1: \quad z = \quad c \, t$

Transverse Wakepotential

R. Wanzenberg | Wakefields and Impedances I | CAS, Nov. 2015 | Page 13

DESY

Kick Parameter

Wakepotential

$$\boldsymbol{\mathcal{W}}(r_2,s) = \frac{1}{q_1} \int_{-\infty}^{\infty} dz [\boldsymbol{E}(r_2,z,t) + c \boldsymbol{e}_z \times \boldsymbol{B}(r_2,z,t)]_{t=(s+z)/c}$$

Line charge density

$$\lambda(s) = \frac{1}{\sigma_z \sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{s^2}{\sigma_z^2}\right)$$

Kick parameter ($\rm V/(pC\,m)$)

$$k_{\perp} = \int ds \,\lambda(s) \,\frac{1}{r_2} \mathcal{W}_{\perp}(r_2, s)$$

 \mathcal{W}_{\perp} radial, vertical or horizontal component of the wake potential

Betatron Tune shift in a storage ring

$$\Delta Q_{\beta} = \frac{I_{bunch} T_0}{4\pi E/e} \,\beta \,k_{\perp}, \quad (\beta \text{ function, optics})$$

From Wakes to Impedance

- Wake Field = the track left by a moving ship in water
- Impedance = Fourier Transform (Wake Field)

Warning: Wakefields have a bad reputation and the generation of wakes may be even illegal in some communities: NO WAKE please on Chicago river (PAC 2001)

Impedance

Longitudinal impedance

$$Z_{\parallel}(r_{2\perp},\omega) = \frac{1}{c} \int_{-\infty}^{\infty} ds \, W_{\parallel}(r_{2\perp},s) \, \exp(-i\frac{\omega}{c} \, s)$$

Longitudinal Wakepotential

Transverse impedance

$$\frac{\mathbf{Z}_{\perp}(r_{2\perp},\omega) = \frac{-i}{c} \int_{-\infty}^{\infty} ds \, \mathbf{W}_{\perp}(r_{2\perp},s) \, \exp(-i\frac{\omega}{c} \, s)}{\text{ohase factor } -i = \exp(-i\pi/2)}$$

Wakepotential of a Gaussian bunch $\mathcal{W}_{\parallel}(r_{2\perp},s) = \int_{0}^{\infty} ds' \,\lambda(s-s') \,W_{\parallel}(r_{2\perp},s')$

Fourier Transform of the Wake

$$\widetilde{\lambda}(\omega) \ Z_{\parallel}(r_{2\perp},\omega) = \frac{1}{c} \int_{-\infty}^{\infty} ds \ \mathcal{W}_{\parallel}(r_{2\perp},s) \ \exp(-i\frac{\omega}{c} s)$$

You get the Impedance

Equivalent Circuit Model

Impedance

$$2\,k_{\parallel} = \omega_r\,\frac{R}{Q} = \frac{1}{C}$$

$$\omega_r = \frac{1}{\sqrt{L C}}$$

 $Q = \omega_r \, R \, C$

Loss parameter (Gaussian bunch)

$$k_{tot} \approx k_{\parallel} \exp\left(-\omega_r^2 \left(\frac{\sigma_z}{c}\right)^2\right)$$

R. Wanzenberg | Wakefields and Impedances I | CAS, Nov. 2015 | Page 18

Wake Potential s > 0 (point charge)

long range wakefield of one mode

 $Z_{\parallel}(\omega) = \frac{1}{1 + i Q \left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)}$

$$W_{\parallel}(s) \approx -2 k_{\parallel} \cos(\omega_r \frac{s}{c}) \exp(-\frac{\omega_r}{2 Q} \frac{s}{c})$$

Panofsky-Wenzel-Theorem

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = -\boldsymbol{\nabla}_{2\perp} W_{\parallel}(\boldsymbol{r}_{2\perp},s)$$

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = \frac{1}{q_1} \int_{-\infty}^{\infty} dz \left[\frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{E}_{\perp}(\boldsymbol{r}_{2\perp},z,t) + c \, \boldsymbol{e}_z \times \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{B}(\boldsymbol{r}_{2\perp},z,t) \right]_{t=(s+z)/c}$$

Maxwell Equation:
$$\nabla \times E = -\frac{\partial}{\partial t}B \Rightarrow e_z \times \frac{\partial}{\partial t}B = \frac{\partial}{\partial z}E_{\perp} - \nabla_{\perp}E_z$$

$$\frac{d}{dz}\boldsymbol{E}_{\perp}(\boldsymbol{r}_{2\perp},z,\frac{z+s}{c}) = \left(\frac{\partial}{\partial z} + \frac{1}{c}\frac{\partial}{\partial t}\right)\boldsymbol{E}_{\perp}(\boldsymbol{r}_{2\perp},z,\frac{z+s}{c})$$

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = \frac{1}{q_1} \int_{-\infty}^{\infty} dz \left(\left(\frac{d}{dz} \boldsymbol{E}_{\perp}\right)(\boldsymbol{r}_2,\frac{z+s}{c}) - \boldsymbol{\nabla}_{\perp} E_z(\boldsymbol{r}_2,\frac{z+s}{c}) \right)$$

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = -\boldsymbol{\nabla}_{2\perp} W_{\parallel}(\boldsymbol{r}_{2\perp},s) + \frac{1}{q_1} \int_{-\infty}^{\infty} dz (\frac{d}{dz} \boldsymbol{E}_{\perp})(\boldsymbol{r}_2,\frac{z+s}{c})$$

Panofsky-Wenzel-Theorem (cont.)

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = -\boldsymbol{\nabla}_{2\perp} W_{\parallel}(\boldsymbol{r}_{2\perp},s)$$

Frequency domain version of the Panofsky-Wenzel-Theorem:

$$\frac{\omega}{c} \boldsymbol{Z}_{\perp}(\boldsymbol{r}_{2\perp},\omega) = \boldsymbol{\nabla}_{\perp} Z_{\parallel}(\boldsymbol{r}_{2\perp},\omega)$$

Integration of the transverse gradient of the longitudinal wake potential provides the transverse wake potential:

$$\boldsymbol{W}_{\perp}(\boldsymbol{r}_{2\perp},s) = -\boldsymbol{\nabla}_{\perp} \int_{-\infty}^{s} ds' W_{\parallel}(\boldsymbol{r}_{2\perp},s').$$

W.K.H. Panofsky, W.A. Wenzel, Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields, Rev. Sci. Instrum. 27 (1956), 947

Multipole Expansion of the Wake

Longitudinal Wakepotential

$$W_{\parallel}(r_{1}, r_{2}, \varphi_{1}, \varphi_{2}, s) = \sum_{m=0}^{\infty} r_{1}^{m} r_{2}^{m} W_{\parallel}^{(m)}(s) \cos(m(\varphi_{2} - \varphi_{1}))$$

Panofsky–Wenzel theorem

$$\frac{\partial}{\partial s} \boldsymbol{W}_{\perp}(x_2, y_2, x_1, y_1, s) = -\boldsymbol{\nabla}_{\perp_2} W_{\parallel}(x_2, y_2, x_1, y_1, s)$$

Multipole expansion in Cartesian coordinates

$$W_{\parallel}(x_1, y_1, x_2, y_2, s) \approx W_{\parallel}^{(0)}(s) + (x_2 x_1 + y_2 y_1) W_{\parallel}^{(1)}(s) + ((x_2^2 - y_2^2) (x_1^2 - y_1^2) + 2x_2 y_2 2x_1 y_1) W_{\parallel}^{(2)}(s)$$

$$\begin{aligned} \boldsymbol{W}_{\perp}(x_1, y_1, x_2, y_2, s) &\approx & (x_1 \ \boldsymbol{u}_{\boldsymbol{x}} + y_1 \ \boldsymbol{u}_{\boldsymbol{y}}) \ W_{\perp}^{(1)}(s) \\ &+ (x_2 \ \boldsymbol{u}_{\boldsymbol{x}} - y_2 \ \boldsymbol{u}_{\boldsymbol{y}}) \ 2 \ (x_1^2 - y_1^2) \ W_{\perp}^{(2)}(s) \\ &+ (y_2 \ \boldsymbol{u}_{\boldsymbol{x}} + x_2 \ \boldsymbol{u}_{\boldsymbol{y}}) 2 \ (2 \ x_1 \ y_1) \ W_{\perp}^{(2)}(s). \end{aligned}$$

 $W_{\perp}^{(m)}(s) = -\int_{-\infty}^{s} ds' W_{\parallel}^{(m)}(s')$ R. Wanzenberg | Wakefields and Impedances I | CAS, Nov. 2015 | Page 21

Monopole and Dipole Wake

(0) .

Longitudinal Wakepotential

 $W_{\parallel}(x_1, y_1, x_2, y_2, s) \approx W_{\parallel}^{(0)}(s) + (x_2 x_1 + y_2 y_1) W_{\parallel}^{(1)}(s)$

Transverse Wakepotential

$$\boldsymbol{W}_{\perp}(x_1, y_1, x_2, y_2, s) \approx (x_1 \ \boldsymbol{u}_{\boldsymbol{x}} + y_1 \ \boldsymbol{u}_{\boldsymbol{y}}) \ W_{\perp}^{(1)}(s)$$

Monopole Wakepotential

Longitudinal Dipole Wakepotential

Transverse Dipole Wakepotential

$$\begin{split} & W_{\parallel}^{(0)}(s) \\ & W_{\parallel}^{(1)}(s) \\ & W_{\perp}^{(1)}(s) = -\int_{-\infty}^{s} ds' \, W_{\parallel}^{(1)}(s') \end{split}$$

There is no transverse monopole wake potential.

There is no a priori relation between the wake potentials of different azimuthal order.

But for resistive wall impedance (wake) in a pipe with radius b there is a relation: $Z_{\perp}^{(1)}(\omega) = \frac{c}{\omega} \frac{2}{h^2} Z_{\parallel}^{(0)}(\omega)$

$W_{\parallel}(\,r_{\perp},s)$ as a harmonic function

 $W_{\parallel}(\mathbf{r}_{\perp},s)$ is a harmonic function of the transverse coordinates:

$$\boldsymbol{\nabla}_{\perp}^2 W_{\parallel}(\boldsymbol{r}_{\perp},s) = 0$$

Line charge density $\lambda(z)$

Charge density

$$o(\mathbf{r},t) = q_1 \,\lambda_{\perp}(x,y) \,\lambda(z-ct)$$

Current density

$$\boldsymbol{j}(\boldsymbol{r},t) = c \, \boldsymbol{u_z} \, \rho(\boldsymbol{r},t)$$

Maxwell Equation + $\nabla \times (\nabla \times E) = \nabla (\nabla \cdot E) - \nabla^2 E \Rightarrow$ $\nabla^2 E - \frac{1}{c^2} \frac{\partial^2}{\partial^2 t} E = \frac{1}{\varepsilon_0} \left(\nabla \rho + \frac{1}{c^2} \frac{\partial}{\partial t} j \right)$ $\rho \text{ and } j_z = c \rho \text{ are functions of } z - ct \Rightarrow \frac{\partial}{\partial t} j_z = -c^2 \frac{\partial}{\partial z} \rho \Rightarrow$ $\nabla^2_{\perp} E_z = \left(\frac{1}{c^2} \frac{\partial^2}{\partial^2 t} - \frac{\partial^2}{\partial^2 z} \right) E_z$

$$\nabla_{\perp}^{2} W_{\parallel}(x, y, s) = \frac{1}{q_{1}} \int_{-\infty}^{\infty} dz \, \nabla_{\perp}^{2} E_{z}(x, y, z, (s+z)/c) = 0$$

$$\nabla^2_{\perp} W_{\parallel} \sim \frac{1}{\gamma^2} \to 0, \text{ for } \gamma \to \infty$$

Indirect test beams

 $\nabla^2_{\perp} W_{\parallel}(x, y, s) = 0 \Rightarrow$ It is possible to find $W_{\parallel}(x, y, s)$ for all possible beam positions (x, y) by a numerical solution of Poissons equation if one knows the wake potential on the boundary.

Beam and Test Beams on the boundary. Lines of constant longitudinal wake potential.

Gradient of the longitudinal wake potential. An integration provides the transverse wake potential according to the Panofsky–Wenzel theorem.

PETRA III

Application of Wake Field Calculations: The Light Source PETRA III

PETRA III undulator

PETRA III undulators:

- Length: 10 m / 5 m / 2 m
- Mag. Field: \sim 0.9 T
- Period: \sim 30 mm

Synchrotron radiation from an undulator

Undulator Chamber Wakefields

E. Gjonaj, et al. Wake Computations for Undulator Vacuum Chambers of PETRA III, PAC 07

DESY

Prediction versus Measurement

Betatron oszillations:

 $y = \sqrt{\epsilon_y \,\beta(s) \,\cos(\phi(s))}$

 $\phi(C) = 2\pi \, Q_y$

Measurement: phase $\phi(s)$

Orbit Responce Matrix (ORM) with different single bunch intensities

• 240 x 0.083 mA = 20 mA

• 10 x 2 mA = 20 mA

(ORM Data: J. Keil, DESY)

New Octant: Intensity dependend phase shift

- -0.265 kHz/mA Prediction
- -0.325 kHz/mA Measurement (\sim 20 % larger) 🗸

Acknowledgment

Thank you for your attention !

