Motivation and Overview

(an introduction to the lectures and ^a few things to remember)

 quantitative treatment in lectures -

> Werner Herr**CERN**

- Werner Herr, Intensity Limitations, CAS 2015, CERN

Intensity (density) limitations - Issues

- -Instabilities and beam loss (TMCI, ...)
- -Performance degradation (beam-beam limit, ...)

Build up and evolution of problems and issues (e.g.):

- - Incoherent collective and single particle effects (diffusion, lifetime, halo, emittance growth, ...)
- -Practical problems (operation, technical limits, protection, ...)

Intensity **- F** intensity, current, brightness

- Good performance of machines require good understanding of thelimitations
- We discuss in this school (necessarily incomplete):
	- -Circular and linear machines
	- -Single and multi particle effects
	- -Single and multiple beams
	- -Low and high energy beams
	- -Diagnostics: high brightness and intensity
	- -Numerical and simulation tools

CAS is rather ambitious:

Go beyond standard (general) textbooks, many problems still intensivelystudied and tools are developped:

- Impedance calculations and measurements
- Treatment of collective effects, modelling, ...
- Non-linear beam dynamics
- Beam-beam effects, e-cloud, ions, ...
- Diagnostics, observations and mitigations

....

Bibliography (very selective):

[AC1] A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, World Scientific Publishing, 1993.

[AC2] A. Chao and M. Tigner, Handbook of Accelerator Physics and Engineering, WorldScientific Publishing, 1998.

[LN400] M. Dienes, M. Month, S. Turner (eds), *Frontiers of Particle Beams: Intensity* Limitations, Joint US-CAS Topical Course, Lecture Notes in Physics 400, Springer 1992. [BZ1] B. Zotter and S. Kheifets, Impedances and Wakefields in High Energy ParticleAccelerators, World Scientific, 1997.

[CAS2011] Proceedings of the CERN Accelerator School: High Power Hadron Machines, Bilbao, Spain, 24. May - 2. June 2011, edited by Roger Bailey, CERN-2013-001 (CERN, Geneva, 2013).

[CAS2013] Proceedings of the CERN Accelerator School: Advanced Accelerator Physics, Trondheim, Norway, 28. - 29. August 2013, edited by W. Herr, CERN-2014-009 (CERN, Geneva, 2014), DOI: http://dx.doi.org/10.5170/CERN-2014-009.

Bibliography in individual lectures

And: Thanks to everybody who provided many of the figures

Categories of limitations:

- Incoherent single and multi particle effects, mostly slow
- Collective incoherent effects
- Collective coherent effects, often fast
- More than one beam: beam-beam effects, electron cloud, beamgas interactions, ...
- Practical considerations

Particles and beams are sources of em-fields and affect the dynamicsof other particles interacting with these fields

Categories of interactions:

- Interaction of particles within ^a bunch (e.g. direct space charge, IBS, ..)
- Interaction of particles with other bunches (e.g. coupled bunches)
- Interaction with other "beams" (e.g. beam-beam , electron cloud)
- Interaction with the accelerator elements (e.g. magnetic fields)
- Interaction with the environment

We can expect: more particles more troubles ...

Interaction with environment

- Impedances and wake fields
- Image space charge forces and Resistive wall
- Cavities and beam pipes, induced fields and Higher Order Modes
- Restgas scattering
- Synchrotron radiation (e.g. build up of e-cloud)

Impedances and wake-fields

- In the presence of elements (e.g. beam pipe): fields interact withthe vacuum chamber
- Described by the <u>impedance</u> and <u>wake-fields</u>
- The fields affect particles travelling behind: wake-fields
- For ultra-relativistic particle: dominant effect
- Very good knowledge essential (computation and measurements), needed for reliable modelling of the effects and mitigation

For an actual cavity: impedance (smooth) sum over large number of resonators

"broad band impedance"

Impedances and wake fields

- Source of many collective effects, detailed knowledge essential tounderstand beam stability, we see:
	- Induced fields \longrightarrow incoherent and coherent tune shifts
	- Instabilities (details later)
	- Heating, parasitic losses
- Growth rates etc. from wake fields increase with increasingintensities, "self-inflicted" damping such as decoherence etc. remain fixed, this sucks
- Must expect strong dependence on intensity

Short and long range wake fields

Examples:

Short range, decays over length of one bunch \longrightarrow only intra-bunch modes: head-tail

Long range, decays over many bunches (or even several turns) \rightarrow multi bunch and multi-turn instabilities

Heating of the beam pipe

Actually, an old effect:

used to heat pipelines and railroad tracks

origin are : resistivity, skin effect and magnetic induction

In accelerators: usually unwanted ..

Single particle effects

- Resonances, dynamic aperture and beam halo
- Intra beam scattering, Touschek effect
- Restgas scattering
- For ions: change of charge state
- For leptons: quantum excitation, lifetime, (anti-)damping

Non-linear effects and resonances

Presence of non-linear fields

e.g. non-linear machine elements, beam-beam, space charge, ...

- -Resonances
- -Reduced dynamic aperture
- -Emittance growth, particle loss, reduced lifetime, ...

Touschek effect and IBS

Both intensity dependent effects

Touschek effect

-Single scattering effect, possible particle loss

IBS

- Multiple Coulomb scattering, diffusion and growth of emittance(s)

Both observed in many machines. CERN: ISR, SPS, AA, ..

-Important for small emittances and high intensity

Observed emittance growth as function of beam emittances andintensities (Cornell)

Longitudinal space charge

Unbunched beams:

Only transverse fields by symmetry

Bunched beams (or non-uniform longitudinal distribution):

- Modulation of forces along the motion
- Also longitudinal fields

Longitudinal Instabilities

- Robinson instability
- Micro-wave instability
- Coupled bunch instability
- Negative mass instability

Robinson instability

One of the most fundamental instabilities

Single bunch, driven by longitudinal impedance

 $\mathsf{Relevant}$ when: $\omega_{r}~\approx~h\cdot\omega_{0}$

Can considerably reduce the intensity threshold

Stability considerations for low and high intensity

Single bunch modes

Many modes of oscillations (measured in SPS, 2007)

Frequency shift with intensity \implies threshold and limit

Micro-wave instability

Example:

Longitudinal modes, simulated

Different modes, different number of modes

Observations in the CERN SPS in 2007

Example:

Profile of longitudinal modes, measured in SPS

Coupled bunch modes and instability

Coupled (rigid) bunches show many different modes

 $m = 0, 1, ...$

With many bunches: many modes that are potentially unstable, even for low intensity. Makes the prediction of ^a threshold difficult

Unbunched beams - transverse

Transverse modes wave pattern around the machine, differentvelocities

Keywords: <u>Fast waves</u> and <u>Slow waves,</u> related to orbital harmonics. Different behaviour concerning possible instabilities

Negative mass instability - longitudinal

- Particle at $v~\approx~c$ do not travel much faster when accelerated
- Above transition: particles <u>seem</u> to experience an attractive force (negative mass)
- Result: (longitudinal) self-bunching and particle loss
- Determines an intensity threshold
	- and: unbunched beams unstable above transition

Related: effects in flat galaxies ...

Bunched beams

- Transverse modes and instabilities
- Longitudinal modes and instabilities
- Transverse Head-tail instability
- Longitudinal Head-tail instability
- Coupled bunch instability
- Mode coupling and beam break-up

Transverse direct space charge

Single particle effect due to interactions with the collective fields of ^a bunchFeatures:

Strong energy dependence $(1/\gamma^2)$

Affects incoherent motion (not coherent) and optics

Proportional to intensity and inversely proportional to emittance

Always defocusing in both planes and produces tune spread (can be ratherlarge)

- Dynamics can be:

Emittance dominated

Space charge dominated (depends on intensity)

A strong limit for High Intensity - Low Emittance beams

(see lecture by G. Franchetti)

Image fields

- Beam induced image charges in the wall
- Move along with the beam
- No dependence on emittance
- Do not disappear for higher energies
- Affects incoherent <u>and</u> coherent motion

Micro-wave instability

The term is used for:

Bunched/unbunched beams, transverse and longitudinal

some effects:

- -Often: wakefield wavelength shorter than bunch length
- -Single (short) bunches, fast blow-up
- -Bunch lengthening
- -Typically ^a threshold behaviour

Observed and simulated bunch lengthening in SPS, caused byvacuum flange impedance

Clear dependence on intensity

Transverse coupled bunch modes

Very schematic transverse oscillation of bunches in a train

Transverse mode coupling instability (TMCI)

Also known as: *Fast HeadTail Instability*

- Frequencies of two neighboring modes approach (and eventuallybecome equal) \implies clear intensity dependence
- Threshold for the intensity, can be very severe in lepton machines (LEP, large number of cavities)
- Also observed in hadron machine: SPS

Example:

Transverse Mode coupling (simulation)

Visible onset of instability when modes have equal frequencies

Head-tail instability

Important: frequency spectrum of impedance, need goodknowledge

Observations: plenty (PS, PS Booster, LEP, SPS,..)

In contrast to TMCI: <u>no</u> intensity threshold, <u>always</u> unstable for negative chromaticity

Example:

Head-tail modes (CERN PS, 1974)

 $m = 0$, $m = 1$, $m = 2$

Shape of bunches changes along the length

Example (same bunch, turn by turn, measured with streak camera): Head-tail mode $m = 1$ (CERN LEP)

Electron cloud

- Interaction of synchrotron radiation with environment
- Effect on successive bunches, instabilities and emittance growth
- Depends on bunch pattern (distance) and intensity
- Single bunch effect: density increase head to tail (PEP)

Example:

Vertical (single bunch) beam size growth as function of intensitydue to electron cloud (PEP)

Low energy beams

- Primary effect: space charge $\frac{1}{\sqrt{2}}$ $\frac{1}{\gamma^2}$ (intensity !)
- Beam transfer
- Acceleration from low energy can cause problems at transition

Consequences crossing transition:

Stable phase move on other side of RF wave

$$
\Box \Delta p/p \rightarrow \infty
$$

- Bunch length gets short
- **Synchrotron frequency goes to zero**
- RF bucket gets large \Box

Instabilities in LINACS

- Wake potentials:
	- -Longitudinal wakes \rightarrow energy loss
	- -Transverse wakes \rightarrow transverse deflection
- Resonant cavities: fundamental and Higher Order Modes (HOM)
- Other challenges: beam loading

Space charge in LINACS

- At low energies will limit the intensity
- Example: SNS
- An issue: emittance growth, matching
- Lower energy linacs often "part" of particle sources, see later

Beam break-up (BBU) in linacs

- Transverse displacement causes wakes and deflect trailingparticles in ^a bunch
- Dipolar and Quadrupolar beam break-up occur
- Both limiting the bunch intensity, may be ^a hard limit for linearcolliders
- Cumulative ..

Beam-beam collision

Typically:

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 0.001% (or less) of particles collide

99.999% (or more) of particles are distorted

Beam-beam effects

Remember:

$$
\mathcal{L} = \frac{N_1 N_2 f n_B}{4 \pi \sigma_x \sigma_y} = \frac{N_1 N_2 f n_B}{4 \pi \cdot \sigma_x \sigma_y}
$$

- **Example 2** Effects are important for present and future machines (RHIC, LHC, FCC, ...)
- See lecture by Tatiana Pieloni and Xavier Buffat

Beam-beam effects in colliders

Very non-linear fields from other beam

Very local, unlike direct space charge

Fields depend on intensity and current

Many consequences on beam dynamics:

- -Incoherent effects
- -Coherent effects
- -Leptons versus hadrons, very different behaviour

Beam-beam effects - Incoherent effects

- Many observations available
- Intensity dependent tune shift and spread (non-linearity) muchsmaller than direct space charge)
- In e+e- colliders: intensity dependent beam-beam limit
- For hadrons: reduced dynamic aperture and bad lifetime (head-onand long range effects exhibit very different behaviour).
- Additional complications: synchro-betatron coupling, bunch tobunch differences, ...

Examples: beam-beam limit

Beam-beam tune shift saturates above ^a threshold intensity

Crossing angles (example LHC)

- **Particles experience distant (weak) forces**
- Separation typically 6 12 σ
- We get so-called long range interactions

Stepwise reduction of long range separation (crossing angle)

Bunch losses depend on number of long range interactions("PACMAN" bunches, see lecture by T. Pieloni)

Beam-beam effects - Coherent effects

- Coherent beam-beam modes:
	- -Can be excited by head-on and long range interactions
	- - Complications for beams with many bunches and irregular fillingschemes
- Other coherent effects:
	- -From bunch to bunch: different tunes and chromaticity
	- - Coherent deflection causes orbit distortions: different frombunch to bunch

PACMAN Orbit effects: calculation

- Vertical ^offset expected at collision point in IP1
- Predicted orbits from self-consistent computation (2003)
	- Cannot be resolved with beam position measurement, but ..

PACMAN Orbit ^effects: measurement

Measured vertex centroid in ATLAS detector

Very good agreement with computation

Luminous Centroid Y Position [mr

Other Beam-beam effects

- Linear colliders (no experimental data)
- Beam-beam compensation
- Beamstrahlung
- Beam-beam for continuous beams
- Asymmetric beams (energy, particle type, ..)
- Synchrobetatron coupling

Limitations at the sources

(we have dedicated schools)

- Applications require different particle types
- Sources are the driver for all following accelerators (in particular: colliders are doomed without proper sources)
- Must:
	- - Produce sources with high quality, e.g. emittance (divergence !), pulse length and brightness
	- - Extraction must produce correct beam for next stage of accelerator (and remove unwanted particles)
	- - With strong space charge: First stage linac lattice must be tuned to ^a specific current
- Examples of sources: thermionic or photocathodes
- Some particles are hard to produce: $\bar{p},$ ions, polarized beams

Example limitations:

- -Heating and cathode charge, emittance
- -Space charge, low energy beam transport with high intensit y
- -Laser power

Practical considerations

- Cryogenics (for SC devices)
- High power synchrotron radiation (leptons)
- Beam loss and machine protection, radiation damage
- Collimation of high brightness beams

and USERS ?

Vacuum

(we have dedicated schools)

- Should allow long beam lifetime (colliders !)
- Electrons: collision with residual gas \rightarrow bremsstrahlung

Beam loss and machine protection

(we have dedicated schools)

Must consider:

- Large stored energy in storage rings (e.g. LHC)
- Large beam power in linear machines (e.g. SNS linac)
- High intensity beams in light sources
- Other safety issues: medical accelerators
- Important: diagnostics !

Diagnostics and instrumentation

(we have dedicated schools)

Without proper diagnostics:

- Instabilities etc. cannot be observed
- -Instabilities etc. cannot be cured
- Vital also for machine protection

The importance is just too obvious !

Numerical modelling

Basics to understand and to improve

- - Beam dynamics as well as machine elements(impedance, magnetic fields, ...)
- -Very good input parameters to have reliable predictions
- -New tools may be necessary, and are constantly developped

Mitigation of limitations

Passive mitigation

Reduction of impedance, shielding, etc.

Proper choice or parameters (Q, Q', ..)

Landau damping

Active mitigation

Feedback systems

Compensation scheme (e.g. non-linear forces)

(Almost) last but not least ...

Not ^a limitation from the accelerator, but we have users:

- **E** Applications may require maximum intensity, brightness,
- Experiments for particle Physics (e.g. LHC)
- -Require "clean" collision signature

...

- To many simultaneous interactions unwanted (seelecture by Lenny, e.g. nominal LHC: maximum \approx 20 - 30), limits the maximum desirable luminosity (bunch spacing !!)

Summary

- **Plenty of limitations to look at during this school**
- **Not complete, but attempts ^a contemporarytreatment**
- **Hope you are sufficiently motivated**