BEAM INSTABILITIES IN LINEAR MACHINES
2

Massimo.Ferrario@LNF.INFN.IT

CERN -5 November 2015 Y

STL




ke (5,7) Single Component
o' +kio =" L.
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:
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Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

o(s) = O,y (5)+60,(s) cos(\/EkSZ)




Envelope oscillations drive Emittance oscillations
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energy spread induces decoherence
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OUTLINE

The rms emittance concept
rms envelope equation
Space charge forces

Beam/Envelope emittance oscillations

Matching conditions in a linac and emittance
compensation
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Envelope Equation with Longitudinal Acceleration
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Other External Focusing Forces
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Beam subject to strong acceleration
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We must include also the RF focusing force: kep = :
o2
ksc = —g(s, }/)



Looking for an “equilibrium” solution [MKUNE
==> all terms must have the same dependence on y




Looking for an “equilibrium” solution [MKUNE
==> all terms must have the same dependence on y
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Space charge dominated beam (Laminar)




This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process




An important property of the laminar beam
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Constant phase space angle: (fs
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Matching Conditions with a TW Linac
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Emittance Compensation for a SC dominated beam:
Controlled Damping of Plasma Oscillations

* ¢, oscillations are driven by Space Charge

E€n

¢, sensitive to SC up to the transition energy
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SELF FIELDS AND WAKE FIELDS

The realm of collective effects

Direct self fields

2l Space Charge

Image self fields

Wake fields
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Introduction and Heuristic model
Basic Concepts
Beam Break Up in Linear Accelerators

BNS damping
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Bunched beam - Circular Perfectly Conducting Pipe

- Beam at Centre- Static Approximation y—>o
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Circular Perfectly Conducting Pipe with Transition

There 1s a longitudinal E (r,z) field in the transition and a test particle experience a
voltage given by:

r I d
V=-—|E|rz)dz=- L)—@(r,0))=- In—
JE(r2)de=~g(r.L)=(r.0)) =~ in
decelerating ifd > b
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For d > b the power is deposited to the energy of the fields: moving
from left to right the beam induces the fields in the additional
space available

The additional power passing through the right part of the beam pipe is obtained by
integrating the Poynting vector throught the sourface =~ A5=7 (@7 - b7)
1~ =\ < ¢EB ro.d
Pem=f —ExB -dS=f 0 2rdr = In—
as\ Y y M ey b

Notice that if d<b the beam gains energy. If d-->% the power goes to infinity, such

an unphysical result is nevertheless consistent with the original assumption of an
infinite energy beam (y->o0).




Reflected and Diffracted fiels

CST MICROWAVE STUDIO®



Short Range Wake Fields Effects =» head tail effects

Long Range Wake Fields Effects =» multibunch instabilities

~ms = Superconducting Cavities

20 {z us = Normal Conducting Cavities



Causality and the Catch-Up distance

The induced charges travel with the same particle velocity v.

Since both the particles and the image charges move on parallel paths, in the limit
v = ¢ they do not interact with each other, no matter how close to the wall the
particles are.
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FIGURE 2. Particles traveling inside a perfectly conducting pipe of arbitrary cross section.

Shown are the image charges on the wall generated by the leading charge.



If a particle moves along a straight line with the speed of light, the electromagnetic
field of this particle scattered off the boundary discontinuities will not overtake it and,
furthermore, will not affect the charges that travel ahead of it.

The field can interact only with the trailing charges in the beam that move behind it.
This constitutes the principle of causality in the theory of wake fields
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FIGURE 3. A wall discontinuity located at z = 0 scatters the electromagnetic field of an
ultrarelativistic particle. When the particle moves to location z, the scattered field arrives to

point z — s .



We can estimate the distance at which the electromagnetic field produced by a
leading charge reaches a trailing particles traveling at a distance s behind.

ct=\/(z—s)2 +b°

2
ZZ = (Z - S) + b2 ==> antch—up = Z_S for § << b

Only after the leading charge has traveled z,,.,,, away from the discontinuity, can
a particle at point s behind it feel the field generated by the discontinuity.
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Wake Potentials

F=g|Ez+(E, - vB,)%+(E,+vB)y|= F+F,
there can be two effects on the
1) a longitudinal force which changes its energy,

2) a transverse force which deflects its trajectory.



If we consider a device of length L:

the Energy Gain is: U= f Fds

L
the Transverse Deflecting Kick is: | M = f F ds
0

These quantities, normalised to the charges, are called wake-potentials and
are both function of the distance z.

Note that the integration 1s performed over a given path of the trajectory.



. . . U
Longitudinal wake potential W= Energy Loss
[VIC] 9,9
Transverse wake potential 1 M
[VICm] W o=——- Transverse Kick
r, 4,9

The sign minus in the longitudinal wake-potential means that the test
charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is defocusing.



Longitudinal wake potential of a resonant HOM

When a charge crosses a resonant structure, it excites the fundamental mode and
high order modes (HOM). Each mode can be treated as an electric RLC circuit
loaded by an impulsive current.

AEL O T
L

Just after the charge passage, the capacitor is charged with a voltage V =¢/C and the
electric fieldis E, =V /I .

The time evolution of the electric field 1s governed by the same differential equation
of the voltage

V+LV+LV=11
RC LC C




The passage of the impulsive current charges only the capacitor, which changes its
potential by an amount V _(0).

This potential will oscillate and decay producing a current flow in the resistor and

inductance.

For t > O the potential satisfy the following equation and initial conditions:

e Ly Ly g
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putting z = -ct (z 1s negative behind the charge):
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...but what about the source charge?




It is also useful to define the loss factor as the normalised energy lost by the
source charge q

_U(z=0)

q2

k =

Although in general the loss factor is given by the longitudinal wake at z=0, for
charges travelling with the light velocity the longitudinal wake potential 1s
discontinuous at z=0

The exact relationship between k and w(z=0) is given by the beam loading theorem:
A

Wy

w(z —=0)
k =
2 k’\ =
\/

Z

Causality requires that the longitudinal wake potential of a charge|travelling with
the velocity of light is discontinuous at the origin.







Wake potentials and energy loss of a bunched distribution

When we have a bunch with density A(z), we may wander what is the amount of
energy lost or gained by a single charge e in the beam
A

<

N feorrenahebakers)

’ >

To this end we calculate the effect on the charge from the whole bunch by
means of the convolution integral:

Uz) = —e f w,(2'=2) Az)dz!

Which allows to define the wake potentzal of a distribution

U()_l

W (2) =- == w// Z)M)dz!

qe

The total energy lost by the bunch is computed summing up the loss of all particles:

U, ;——fU JA(z )d‘=—qf Z) Mz2)dz



Example: Energy spread and loss for a finite uniform beam due to a HOM
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Energy loss
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Energy spread compensation

Energy profile
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Fig. 5 Energy profile within the bunch sitting on the crest of the rf wave

Energy profile
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Fig. 6 Energy profile within the bunch after optimization of the rf phase



Relationship between transverse and longitudinal forces :
“Panofsky-Wenzel theorem”.

45

1 . i |
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Coupling Impedance

The wake potentials are used for to study the beam dynamics in the
time domain (s=vr). If we take the equation of motion in the frequency
domain, we need the Fourier transform of the wake potentials. Since
these quantities have Ohms units are called coupling impedances:

Longitudinal impedance (£2)

.7

1 i
Z//(w)=vfw//(z)€ vV dz

Transverse impedance (£2/m)

00 .

Z ()= :} fwl(z)e_l"dz

Zy 1s responsible for the energy losses
Z; defines the phase between the beam response & exciting wake potential
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Beam Break Up

A beam injected off-center in a LINAC, because of the focusing quadrupoles,
execute betatron oscillations. The displacement produces a transverse wake field in
all the devices crossed during the flight, which deflects the trailing charges.

JJ\/W

Figure 3.4. Four transverse beam profiles observed at the end of the SLAC linac are shown
when the beam was carefully injected and injected with 0.2, 0.5, and 1 mm offsets. The beam
sizes g, ond o, are about 120 um. (Courtesy John Seeman, 1991.)
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In order to understand the effect, we consider a simple model with
only two charges ¢,=Ne/2 (leading = half bunch) and g,=e (trailing =
single charge). Without acceleration.

q,=¢

N N
< >

A

W

the leading charge executes free betatron oscillations:

Y

c A

w

W, 2n
C?

R W
y,(s) =y, cos (—y )



the test charge, at a distance z behind, over a length L, experiences a
deflecting force proportional to the displacement y,;, and dependent on the

distance z: 0D
> (2)=——
( L 0 q

w N 2
M(r0.2) = [ Fids=(Fio.)L, == (FLG3))= =W @n(s)
0 w

This force drives the motion of the test charge:

betatron equation of motion with coherent force

[ 3 \
« [ 1 Ne“w  (2) w
+| = =—(F (z, = L cos| —=s
Yo (c) Vs [)’2E0< J_( )’1)> ZﬁonLw 1 (C )

This is the typical equation of an harmonic oscillator driven at the resonant
frequency. The solution is given by the superposition of the “free” oscillation
and a “driven” oscillation which, being driven at the resonant frequency,
grows linearly with s.




4 .
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continuos growth

At the end of the LINAC of length L;, the oscillation amplitude 1s
grown by :

Ay,|  cNe‘w, ()L,

y, o 4o E L,
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Balakin-Novokhatsky-Smirnov Damping

The BBU instability 1s quite harmful and hard to take under control even
at high energy with a strong focusing, and after a careful injection and
steering.

A simple method to cure it has been proposed observing that the strong
oscillation amplitude of the bunch tail is mainly due to the “‘resonant”
driving.

If the tail and the head move with a different frequency, this effect
can be significantly removed.

Let us assume that the tail oscillates with a frequency w+Aw, , the
equation of motion reads:

2
. (o, +Aw Ne*w  (2) « W
+| —2 2 = = CoS| —=
Y> ( - ) Y 2[3’2E0Lw Y .




the solution of which 1s:

~ w. +Aw. cNe*w (2) .
v, (s) =79, cos( 2 2 s)+ L2)

N
4w Aw E L,

[90) W +Aw
cos| —2Ls|—cos| = N
C C

C-

0.15

0.1 A

i "
oIV [t
o L 1

-0.15

S

<y>_[mm]

0 200 400 600 800 1000 1200 1400
s_[m]



v, (s) = y,cos(a) +a ) )—yl[cos(wy S')—cos(w +A}J/)]

by a suitable choice of Aw,, it 1s possible to fully depress the oscillations of the
tail. |

>

‘>
]

I
[a—

2 2
¢ Ne W_,_(Z) =1 |:> yz(s)=j\71 COS(&S) = yl(S)

4w Aw E L, C

Awy _ czNesz_(z)
4a)yE0LW

The extra focusing at the tail can be obtained by:

e Using an RFQ, where head and tail see a different focusing strength.

e Creating a correlated energy distribution along the bunch which, because
of the chromaticity, induces a spread in the betatron frequencies. An energy
spread correlated with the longitudinal position is attainable with the

external accelerating voltage, or with the wake fields. -
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