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Single Component 
Relativistic Plasma
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Equilibrium solution:
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Small perturbation:
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Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:
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Envelope oscillations drive Emittance oscillations
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energy spread induces decoherence
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High Brightness Photo-Injector 
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Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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Beam subject to strong acceleration  
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σ inv =σ oγ
nLooking for an “equilibrium” solution 

==> all terms must have the same dependence on γ 
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Looking for an “equilibrium” solution 
==> all terms must have the same dependence on γ 
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Laminar beam 

Thermal beam 
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Space charge dominated beam (Laminar) 

Emittance dominated beam (Thermal) 



This solution represents a beam equilibrium mode that 
turns out to be the transport mode for achieving minimum 
emittance at the end of the emittance correction process 
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Constant phase space angle:

An important property of the laminar beam 
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Potential space charge emittance growth 
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Matching Conditions with a TW Linac  

25 MV/m

150 MeV

€ 

γ tr =
2I
# γ IAεn

€ 

σ q =
1
# γ 

2I
IAγ



0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10
Z_[m]

Gun
Linac

rms beam size [mm]
rms norm. emittance [um]

-0.04

-0.02

0

0.02

0.04

0 0.001 0.002 0.003 0.004 0.005 0.006

z=0.23891

Pr

R [m]

-0.05

0

0.05

0 0.0008 0.0016 0.0024 0.0032 0.004

z=1.5

Pr

R [m]

-0.04

-0.02

0

0.02

0.04

0 0.0008 0.0016 0.0024 0.0032 0.004

z=10

pr
_[
ra
d]

R_[m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

z=0.23891

R
s 

[m
]

Zs-Zb  [m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Z=10

R
s 

[m
]

Zs-Zb [m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

z=1.5

R
s 

[m
]

Zs-Zb [m]





Emittance Compensation for a SC dominated beam:  
Controlled Damping of Plasma Oscillations 

 
•  εn oscillations are driven by Space Charge 

• propagation close to the laminar solution allows control of 
εn oscillation “phase” 

• εn sensitive to SC up to the transition energy 
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The	  realm	  of	  collecHve	  effects	  
SELF	  FIELDS	  AND	  WAKE	  FIELDS	  

Direct self fields

Image self fields

 Wake  fields  

Space Charge
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γ=1 γ≠0 γ >>1 
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Bunched beam - Circular  Perfectly Conducting  Pipe 

- Beam at Centre- Static Approximation γ→∞
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Circular  Perfectly Conducting  Pipe with Transition 
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There is a longitudinal Ez(r,z) field in the transition and a test particle experience a 
voltage given by:
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For d > b the power is deposited to the energy of the fields: moving 
from left to right the beam induces the fields in the additional 

space available
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The additional power passing through the right part of the beam pipe is obtained by

 integrating the Poynting vector throught the sourface

€ 

ΔS = π d2 − b2( )

Notice that if d<b the beam gains energy. If d-->∞ the power goes to infinity, such 
an unphysical result is nevertheless consistent with the original assumption of an 
infinite energy beam (γ->∞).



CST MICROWAVE STUDIO®

Reflected and Diffracted fiels



Short Range Wake Fields Effects è head tail effects

Long Range Wake Fields Effects è multibunch instabilities

Δtb ≈ τ =
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≈ µs ⇒  Normal Conducting Cavities
≈ ms ⇒  Superconducting Cavities
$
%
&
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The induced charges travel with the same particle velocity v.
Since both the particles and the image charges move on parallel paths, in the limit 
v = c they do not interact with each other, no matter how close to the wall the 
particles are.

Causality and the Catch-Up distance 



If a particle moves along a straight line with the speed of light, the electromagnetic  
field of this particle scattered off  the boundary discontinuities will not overtake it and, 

furthermore, will not affect the charges that travel ahead of it.
 

The field can interact only with the trailing charges in the beam that move behind it.
This constitutes the principle of causality in the theory of wake fields
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We can estimate the distance at which the electromagnetic  field produced by a 
leading charge reaches a trailing particles traveling at a distance s behind. 

Only after the leading charge has traveled zcatch-up away from the discontinuity, can 
a particle at point s behind it feel the field generated by the discontinuity.
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there can be two effects on the test charge : 

1) a longitudinal force which changes its energy, 

2) a transverse force which deflects its trajectory. 

Wake Potentials
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F = q Ezˆ z + Ex − vBy( ) ˆ x + Ey + vBx( ) ˆ y [ ] ≡ F// + F⊥
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If we consider a device of length L:

M = F⊥
0

L

∫ ds

the Energy Gain is:

These quantities, normalised to the charges, are called wake-potentials and 
are both function of the distance z. 

Note that the integration is performed over a given path of the trajectory.

the Transverse Deflecting Kick is:
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U = Fz
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U
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Longitudinal wake potential 
[V/C]

Transverse  wake potential  
[V/Cm]

The sign minus in the longitudinal wake-potential means that the test 
charge loses energy when the wake is positive. 

Positive transverse wake means that the transverse force is defocusing.

Energy Loss

Transverse Kick



Longitudinal wake potential of a resonant HOM

When a charge crosses a resonant structure, it excites the fundamental mode and 
high order modes (HOM). Each mode can be treated as an electric RLC circuit 
loaded by an impulsive current.

Just after the charge passage, the capacitor is charged with a voltage Vo=q/C and the 
electric field is Eso= Vo/lo. 

The time evolution of the electric field is governed by the same differential equation 
of the voltage
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The passage of the impulsive current charges only the capacitor, which changes its 
potential by an amount Vc(0). 

This potential will oscillate and decay producing a current flow in the resistor and 
inductance. 

For t > 0 the potential satisfy the following equation and initial conditions:
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…but what about the source charge?



It is also useful to define the loss factor as the normalised energy lost by the 
source charge q
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k = −
U(z = 0)

q2

Although in general the loss factor is given by the longitudinal wake at z=0,  for 
charges travelling with the light velocity the longitudinal wake potential is 
discontinuous at z=0

The exact relationship between k and w(z=0) is given by the  beam loading theorem:

€ 

k =
w//(z → 0)

2

Causality requires that the longitudinal wake potential of a charge travelling with 
the velocity of light is discontinuous at the origin.
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Wake potentials and energy loss of a bunched  distribution 

When we have a bunch with density λ(z), we may wander what is the amount of 
energy lost or gained by a single charge  e in the beam

To this end we calculate the effect on the charge from the whole bunch by 
means of the convolution integral:
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Which allows to define the wake potential of a distribution
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Energy spread compensation



Relationship between transverse and longitudinal forces : 
“Panofsky-Wenzel theorem”.
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Coupling Impedance

The wake potentials are used for to study the beam dynamics in the 
time domain (s=vt). If we take the equation of motion in the frequency 
domain, we need the Fourier transform of the wake potentials. Since 
these quantities have Ohms units are called coupling impedances:
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Beam Break Up

A beam injected off-center in a LINAC, because of the focusing quadrupoles, 
execute betatron oscillations. The displacement produces a transverse wake field in 

all the devices crossed during the flight, which deflects the trailing charges. 





In order to understand the effect, we consider a simple model with 
only two charges q1=Ne/2 (leading = half bunch) and q2=e (trailing = 
single charge). Without acceleration.
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At the end of the LINAC of length LL, the oscillation amplitude is 
grown by :
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Balakin-Novokhatsky-Smirnov Damping

The BBU instability is quite harmful and hard to take under control even 
at high energy with a strong focusing, and after a careful injection and 
steering. 

A simple method to cure it has been proposed observing that the strong 
oscillation amplitude of the bunch tail is mainly due to the “resonant” 
driving. 

If the tail and the head move with a different frequency, this effect 
can be significantly removed. 

Let  us  assume that  the  tail  oscillates  with  a  frequency  ωy+Δωy  ,  the 
equation of motion reads:
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the solution of which is:
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by a suitable choice of Δωy, it is possible to fully depress the oscillations 
of the tail. 

y2 (s) = ŷ1 cos
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c2Ne2w⊥ (z)
4ωyEoLw

Exploit the energy spread across the bunch which, because of the 
chromaticity, induces a spread in the betatron frequency. An energy 
spread correlated with the position is attainable with the external 
accelerating voltage, or with the wake fields.
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