BEAM INSTABILITIES IN LINEAR MACHINES 1

Massimo.Ferrario@LNF.INFN.IT

SELF FIELDS AND WAKE FIELDS

The realm of collective effects

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Beam/Envelope emittance oscillations
- Matching conditions in a linac and emittance compensation

Trace space of an ideal laminar beam

Trace space of a laminar beam

Trace space of non laminar beam

Geometric emittance:

Ellipse equation:
$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon_g$$

Twiss parameters: $\beta \gamma - \alpha^2 = 1$ $\beta' = -2\alpha$

$$\beta \gamma - \alpha^2 = 1$$

$$\beta' = -2\alpha$$

Ellipse area:

$$A = \pi \varepsilon_{g}$$

Fig. 17: Filamentation of mismatched beam in non-linear force

Trace space evolution

rms emittance

$${\cal E}_{rms}$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, x') dx dx' = 1 \qquad f'(x, x') = 0$$

rms beam envelope:

$$\sigma_x^2 = \langle x^2 \rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, x') dx dx'$$

Define rms emittance:

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon_{rms}$$

such that:

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$

$$\sigma_{x'} = \sqrt{\langle x'^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$

$$\beta = \frac{\left\langle x^2 \right\rangle}{}$$

Since:

$$\alpha = -\frac{\beta'}{2}$$

$$\alpha = -\frac{\beta'}{2} \qquad \beta = \frac{\langle x^2 \rangle}{\varepsilon_{rms}}$$

it follows:
$$\alpha = -\frac{1}{2\varepsilon_{rms}} \frac{d}{dz} \langle x^2 \rangle = -\frac{\langle xx' \rangle}{\varepsilon_{rms}} = -\frac{\sigma_{xx'}}{\varepsilon_{rms}}$$

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$

$$\sigma_{x'} = \sqrt{\langle x^{'2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$

$$\sigma_{xx'} = \langle xx' \rangle = -\alpha \varepsilon_{rms}$$

It holds also the relation:

$$\gamma \beta - \alpha^2 = 1$$

Substituting
$$\alpha, \beta, \gamma$$
 we get $\frac{\sigma_{x'}^2}{\varepsilon_{rms}} \frac{\sigma_x^2}{\varepsilon_{rms}} - \left(\frac{\sigma_{xx'}}{\varepsilon_{rms}}\right)^2 = 1$

We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)}$$

Which distribution has no correlations?

What does rms emittance tell us about phase space distributions under linear or non-linear forces acting on the beam?

Assuming a generic x, x' correlation of the type: $x' = Cx^n$

When
$$n = 1 = > \epsilon_{rms} = 0$$

$$\varepsilon_{rms}^2 = C^2 \left(\left\langle x^2 \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^2 \right)$$
When $n \neq 1 = > \epsilon_{rms} \neq 0$

Constant under linear transformation only

$$\frac{\mathrm{d}}{\mathrm{d}z}\langle x^2\rangle\langle x'^2\rangle - \langle xx'\rangle^2 = 2\langle xx'\rangle\langle x'^2\rangle + 2\langle x^2\rangle\langle x'\rangle\langle x''\rangle - 2\langle xx''\rangle\langle xx'\rangle = 0$$

For linear transformations, $x'' = -k_x^2 x$, and the right-hand side of the equation is

$$2k_x^2\langle x^2\rangle\langle xx'\rangle - 2\langle x^2\rangle\langle xx'\rangle k_x^2 = 0,$$

SO

$$\frac{\mathrm{d}}{\mathrm{d}z}\langle x^2\rangle\langle x'^2\rangle - \langle xx'\rangle^2 = 0$$

And without acceleration:

$$x' = \frac{p_x}{p_z}$$

Normalized rms emittance: $\varepsilon_{n,rms}$

Canonical transverse momentum: $p_x = p_z x' = m_o c \beta \gamma x'$ $p_z \approx p$

$$\varepsilon_{n,rms} = \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2} = \frac{1}{m_o c} \sqrt{\left(\left\langle x^2 \right\rangle \left\langle p_x^2 \right\rangle - \left\langle x p_x \right\rangle^2\right)} \approx \left(\beta \gamma \right) \varepsilon_{rms}$$

Liouville theorem: the density of particles n, or the volume V occupied by a given number of particles in phase space (x,p_x,y,p_y,z,p_z) remains invariant under conservative forces.

$$\frac{dn}{dt} = 0$$

It hold also in the projected phase spaces $(x,p_x),(y,p_y)(,z,p_z)$ provided that there are no couplings

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Beam/Envelope emittance oscillations
- Matching conditions in a linac and emittance compensation

Envelope Equation without Acceleration

Now take the derivatives:

$$\frac{d\sigma_{x}}{dz} = \frac{d}{dz}\sqrt{\langle x^{2}\rangle} = \frac{1}{2\sigma_{x}}\frac{d}{dz}\langle x^{2}\rangle = \frac{1}{2\sigma_{x}}2\langle xx'\rangle = \frac{\sigma_{xx'}}{\sigma_{x}}$$

$$\frac{d^{2}\sigma_{x}}{dz^{2}} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_{x}} = \frac{1}{\sigma_{x}}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}} = \frac{1}{\sigma_{x}}(\langle x'^{2}\rangle + \langle xx'\rangle) - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}} = \frac{\sigma_{x'}^{2} + \langle xx''\rangle}{\sigma_{x}} - \frac{\sigma_{xx'}^{2}}{\sigma_{x}^{3}}$$

And simplify:
$$\sigma_x'' = \frac{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x}$$

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term.

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x'' + k_x^2 x = 0$

take the average over the entire particle ensemble $\langle xx'' \rangle = -k_x^2 \langle x^2 \rangle$

$$\sigma_x'' + k_x^2 \sigma_x = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

We obtain the rms envelope equation with a linear focusing force in which the rms emittance enters as defocusing pressure like term.

$$\left| \frac{\varepsilon_{rms}^2}{\sigma_x^3} \approx \frac{T}{V} \approx P \right|$$

Beam temperature

Kinetic theory of gases defines temperature (in each direction and global) as

$$k T_{x,y,s} = m < v_{x,y,s}^2 > ,$$
 $T = \frac{1}{3} (T_x + T_y + T_s)$ $(\frac{1}{2} m v^2 = \frac{3}{2} kT)$

k: Boltzmann constant, m: mass of molecules, $v_{x,y,\,s}$: velocity components of molecules

Definition of beam temperature in analogy:

$$k T_{beam,x,y,s} = m_0 < v_{x,y,s}^2 >$$
,

where $v_{x,y,s}$ are the velocity spreads in the system moving with the beam.

The transverse velocity spread in the beam system is given by the r.m.s emittance:

$$< v_x^2 >= (\beta \gamma c)^2 < (x')^2 > = (\beta \gamma c)^2 \gamma_x \cdot \varepsilon_{x,r.m.s}$$
 similar for y direction
 βc : longitudinal beam velocity β, γ : relativistic parameter, $\gamma_x \approx 1/\beta_x$: Twiss (lattice) parameter

$$==>$$
 k $T_{beam,x,y} = m_0 c^2 (\beta \gamma)^2 \gamma_{x,y} \cdot \mathcal{E}_{x,y;rms}$

$$==>$$
 k $T_{beam,x,y} = m_0 c^2 (\beta \gamma)^2 \gamma_{x,y} \cdot \varepsilon_{x,y;rms}$

Property	Hot beam	Cold beam
ion mass (m _o)	heavy ion	light ion
ion energy (βγ)	high energy	low energy
beam emittance (ε)	large emittance	small emittance
lattice properties $(\gamma_{x,y} \approx 1/\beta_{x,y})$	strong focus (low β)	high β
phase space portrait	hot beam x	cold beam *'

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving cold (light) electron beam.

Particle Accelerators 1973, Vol. 5, pp. 61-65 © Gordon and Breach, Science Publishers Ltd.
Printed in Glasgow, Scotland

EMITTANCE, ENTROPY AND INFORMATION

J. D. LAWSON

Rutherford Laboratory, Chilton, Berkshire, England

P. M. LAPOSTOLLE

Centre National d'Études des Télécommunications, Issy-les-Moulineaux, France

and

R. L. GLUCKSTERN

Department of Physics and Astronomy, University of Massachusetts, Amherst, Mass. USA

 $S = kN \log(\pi \varepsilon)$

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Beam/Envelope emittance oscillations
- Matching conditions in a linac and emittance compensation

Space Charge: what does it mean?

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects

Continuous Uniform Cylindrical Beam Model

Gauss's law

$$\int \varepsilon_o E \cdot dS = \int \rho dV$$

$$E_r = \frac{I}{2\pi\varepsilon_o R^2 v} r \quad \text{for } r \le R$$

$$E_r = \frac{I}{2\pi\varepsilon_o v} \frac{1}{r} \quad \text{for } r > R$$

 $B_{\vartheta} = \frac{\beta}{2} E_r$

Ampere's law

$$\int B \cdot dl = \mu_o \int J \cdot dS$$

$$B_{\vartheta} = \mu_o \frac{Ir}{2\pi R^2} \quad \text{for} \quad r \le R$$

$$B_{\vartheta} = \mu_o \frac{I}{2\pi r} \quad \text{for} \quad r > R$$

Bunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:

$$\tilde{\rho} = \frac{Q}{\pi R^2 \tilde{L}} \qquad \qquad \tilde{E}_z(\tilde{s}, r = 0) = \frac{\tilde{\rho}}{4\pi\varepsilon_o} \int_0^R \int_0^{2\pi} \int_0^{\tilde{L}} \frac{\left(\tilde{l} - \tilde{s}\right)}{\left[\left(\tilde{l} - \tilde{s}\right)^2 + r^2\right]^{3/2}} \ r dr d\varphi d\tilde{l}$$

$$\tilde{E}_{z}(\tilde{s}, r = 0) = \frac{\tilde{\rho}}{2\varepsilon_{0}} \left[\sqrt{R^{2} + (\tilde{L} - \tilde{s})^{2}} - \sqrt{R^{2} + \tilde{s}^{2}} + (2\tilde{s} - \tilde{L}) \right]$$

Radial Space Charge field in the bunch moving frame by series representation of axisymmetric field:

$$\tilde{E}_r(r,\tilde{s}) \cong \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}} \tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\tilde{\rho}}{\varepsilon_0} + \frac{\tilde{\rho}}{\varepsilon_0}\right] \frac{r}{2} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\tilde{\rho}}{\varepsilon_0} + \frac{\tilde{\rho}}{\varepsilon_0}\right] \frac{r}{2} + \frac{1}{6} \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\tilde{\rho}}{\varepsilon_0} + \frac{\tilde{\rho}}{\varepsilon_0}\right] \frac{r}{2} + \frac{\tilde{\rho}}{\varepsilon_0} + \frac{\tilde{\rho}}{\varepsilon_0}$$

$$\tilde{E}_r(r,\tilde{s}) = \frac{\tilde{\rho}}{2\varepsilon_0} \left[\frac{(\tilde{L} - \tilde{s})}{\sqrt{R^2 + (\tilde{L} - \tilde{s})^2}} + \frac{\tilde{s}}{\sqrt{R^2 + \tilde{s}^2}} \right] \frac{r}{2}$$

Lorentz Transformation to the Lab frame

$$E_{z} = \tilde{E}_{z} \qquad \qquad \tilde{L} = \gamma L \implies \tilde{\rho} = \frac{\rho}{\gamma}$$

$$E_{r} = \gamma \tilde{E}_{r} \qquad \qquad \tilde{s} = \gamma s$$

$$E_z(0,s) = \frac{\rho}{\gamma 2\varepsilon_0} \left[\sqrt{R^2 + \gamma^2 (L-s)^2} - \sqrt{R^2 + \gamma^2 s^2} + \gamma (2s - L) \right]$$

$$E_r(r,s) = \frac{\gamma \rho}{2\varepsilon_0} \left[\frac{(L-s)}{\sqrt{R^2 + \gamma^2 (L-s)^2}} + \frac{s}{\sqrt{R^2 + \gamma^2 s^2}} \right] \frac{r}{2}$$

It is still a linear field with r but with a longitudinal correlation s

Bunched Uniform Cylindrical Beam Model

$$E_z(0, s, \gamma) = \frac{I}{2\pi\gamma\varepsilon_0 R^2 \beta c} h(s, \gamma)$$

$$E_r(r, s, \gamma) = \frac{Ir}{2\pi\varepsilon_0 R^2 \beta c} g(s, \gamma)$$

Lorentz Force

$$F_r = e(E_r - \beta cB_{\vartheta}) = e(1 - \beta^2)E_r = \frac{eE_r}{\gamma^2}$$

is a **linear** function of the transverse coordinate

$$\frac{dp_r}{dt} = F_r = \frac{eE_r}{\gamma^2} = \frac{eIr}{2\pi\gamma^2 \varepsilon_0 R^2 \beta c} g(s, \gamma)$$

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect.

$$F_{x} = \frac{eIx}{2\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

Envelope Equation with Space Charge

Single particle transverse motion:

$$\frac{dp_x}{dt} = F_x \qquad p_x = p \ x' = \beta \gamma m_o c x'$$

$$\frac{d}{dt} (px') = \beta c \frac{d}{dz} (p \ x') = F_x$$

$$x'' = \frac{F_x}{\beta cp}$$

$$F_{x} = \frac{eIx}{2\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

$$x'' = \frac{k_{sc}(s, \gamma)}{\sigma_x^2} x$$

Now we can calculate the term $\langle xx'' \rangle$ that enters in the envelope equation

$$\sigma_{x}'' = \frac{\varepsilon_{rms}^{2}}{\sigma_{x}^{3}} + \frac{\langle xx'' \rangle}{\sigma_{x}}$$

$$x'' = \frac{k_{sc}}{\sigma_{x}^{2}} x$$

$$\langle xx'' \rangle = \frac{k_{sc}}{\sigma_{x}^{2}} \langle x^{2} \rangle = k_{sc}$$

$$x'' = \frac{k_{sc}}{\sigma_x^2} x$$

$$\langle xx'' \rangle = \frac{k_{sc}}{\sigma_x^2} \langle x^2 \rangle = k_{sc}$$

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$
Emittance Pressure

External Focusing Forces

Laminarity Parameter:
$$\rho = \frac{(\beta \gamma)^2 k_{sc} \sigma_x^2}{\varepsilon_n^2}$$

The beam undergoes two regimes along the accelerator

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_x^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

 $\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$

 $\rho >> 1$

Laminar Beam

ρ<<1

Thermal Beam

Fig. 10: Particle trajectories in laminar beam

Fig. 11: Particle trajectories in non-zero emittance beam

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Beam/Envelope emittance oscillations
- Matching conditions in a linac and emittance compensation

Surface charge density

$$\sigma = e n \delta x$$

Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m\frac{d^2\delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x.$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{\rm n \ e^2}{\epsilon_0 \ \rm m}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \, \cos{(\omega_p \, t)}$$

Neutral Plasma

- Oscillations
- Instabilities
- EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

Magnetic focusing

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s, \gamma)}{\sigma}$$

Equilibrium solution:

$$\sigma_{eq}(s,\gamma) = \frac{\sqrt{k_{sc}(s,\gamma)}}{k_{s}}$$

Small perturbation:

$$\sigma(\zeta) = \sigma_{eq}(s) + \delta\sigma(s)$$

$$\delta\sigma''(s) + 2k_s^2\delta\sigma(s) = 0$$

Single Component Relativistic Plasma

$$k_s = \frac{qB}{2mc\beta\gamma}$$

$$\delta\sigma(s) = \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Continuous solenoid channel

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_{o}(s)\cos(\sqrt{2}k_{s}z)$$

Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

Elliptical cross section bunch

$$E_{y} = \frac{I}{\beta c \pi \varepsilon_{o}} \frac{y}{Y(X+Y)}$$

$$E_r = \frac{I}{2\beta c\pi \varepsilon_o R^2} r$$

$$R^* = \frac{X + Y}{2}$$

$$E_{x} = \frac{I}{\beta c \pi \varepsilon_{o}} \frac{x}{X(X+Y)}$$

$$E_{x}(X,z) = E_{y}(Y,z) = E_{r}(R^{*},z)$$

OUTLINE

- The rms emittance concept
- rms envelope equation
- Space charge forces
- Beam/Envelope emittance oscillations
- Matching conditions in a linac and emittance compensation

High Brightness Photo-Injector

Envelope Equation with Longitudinal Acceleration

$$p_{o} = \gamma_{o} m_{o} \beta_{o} c$$

$$p_{x} << p_{o}$$

$$p = p_{o} + p' z$$

$$p' = (\beta \gamma)' m_{o} c$$

$$\begin{aligned} p_o &= \gamma_o m_o \beta_o c \\ p_x &<< p_o \\ p &= p_o + p'z \\ p' &= \left(\beta \gamma\right)' m_o c \end{aligned} \qquad \begin{aligned} \frac{dp_x}{dt} &= \frac{d}{dt} \left(px'\right) = \beta c \frac{d}{dz} \left(px'\right) = 0 \\ x'' &= -\frac{\left(\beta \gamma\right)'}{\beta \gamma} x' \\ p &= 0 \end{aligned}$$

$$x'' = -\frac{\left(\beta\gamma\right)'}{\beta\gamma}x'$$

$$\langle xx'' \rangle = -\frac{(\beta \gamma)'}{\beta \gamma} \langle xx' \rangle = -\frac{(\beta \gamma)'}{\beta \gamma} \sigma_{xx'} \qquad \sigma_{x}'' = \frac{\varepsilon_{rms}^{2}}{\sigma_{x}^{3}} + \frac{\langle xx'' \rangle}{\sigma_{x}} \qquad \frac{d\sigma_{x}}{dz} = \sigma_{x}' = \frac{\sigma_{xx'}}{\sigma_{x}}$$

$$\sigma_x'' = \frac{\varepsilon_{rms}^2}{\sigma_x^3} + \frac{\langle xx'' \rangle}{\sigma_x}$$

$$\frac{d\sigma_x}{dz} = \sigma_x' = \frac{\sigma_{xx'}}{\sigma_x}$$

Space Charge De-focusing Force

$$\sigma_x'' + \frac{(\beta \gamma)'}{\beta \gamma_*} \sigma_x' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$
ping

Emittance Pressure

Adiabatic Damping

Emittance Pressure

Other External Focusing Forces

$$\varepsilon_n = \beta \gamma \varepsilon_{rms}$$

Beam subject to strong acceleration

$$\sigma_x'' + \frac{\gamma'}{\gamma}\sigma_x' + \frac{k_{RF}^2}{\gamma^2}\sigma_x = \frac{\varepsilon_n^2}{\gamma^2\sigma_x^3} + \frac{k_{sc}^o}{\gamma^3\sigma_x}$$

We must include also the RF focusing force:

$$k_{RF}^2 = \frac{{\gamma'}^2}{2}$$

$$k_{sc}^{o} = \frac{2I}{I_{A}}g(s,\gamma)$$

$$\sigma_x'' + \frac{\gamma'}{\gamma}\sigma_x' + \frac{k_{RF}^2}{\gamma^2}\sigma_x = \frac{\varepsilon_n^2}{\gamma^2\sigma_x^3} + \frac{k_{sc}^o}{\gamma^3\sigma_x}$$

$$\gamma = 1 + \alpha z \qquad \Longrightarrow \qquad \gamma'' = 0$$

Looking for an "equilibrium" solution $\sigma_{inv} = \sigma_o \gamma^n$ ==> all terms must have the same dependence on γ

$$\sigma'_{inv} = n\sigma_o \gamma^{n-1} \gamma'$$

$$\sigma''_{inv} = n(n-1)\sigma_o \gamma^{n-2} \gamma'^2$$

$$n(n-1)\sigma_o\gamma^{n-2}\gamma'^2 + n\sigma_o\gamma^{n-2}\gamma'^2 + k_{RF}^2\sigma_o\gamma^{n-2} = \frac{k_{SC}^o}{\sigma_x}\gamma^{-3-n}$$

$$n - 2 = -3 - n \Rightarrow n = -\frac{1}{2}$$

$$\sigma_x'' + \frac{\gamma'}{\gamma}\sigma_x' + \frac{k_{RF}^2}{\gamma^2}\sigma_x = \frac{\varepsilon_n^2}{\gamma^2\sigma_x^3} + \frac{k_{sc}^o}{\gamma^3\sigma_x}$$

$$\gamma = 1 + \alpha z$$

$$==> \gamma'' = O$$

Looking for an "equilibrium" solution $\sigma_{inv} = \sigma_o \gamma^n$ ==> all terms must have the same dependence on γ

Laminar beam
$$\rho >> 1 \Rightarrow n = -\frac{1}{2}$$

$$\sigma_q = \frac{\sigma_o}{\sqrt{\gamma}}$$

Thermal beam
$$\rho << 1 \Rightarrow n = 0$$

$$\sigma_{\varepsilon} = \sigma_{o}$$

Space charge dominated beam (Laminar)

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

Emittance dominated beam (Thermal)

$$\sigma_{\varepsilon} = \sqrt{\frac{2\varepsilon_n}{\gamma'}}$$

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process

An important property of the laminar beam

$$\sigma_q = \frac{1}{\gamma'} \sqrt{\frac{2I}{I_A \gamma}}$$

$$\sigma_{q}' = -\sqrt{\frac{2I}{I_{A}\gamma^{3}}}$$

Constant phase space angle:
$$\delta = \frac{\gamma \sigma_q'}{\sigma_q} = -\frac{\gamma'}{2}$$

Laminarity parameter

$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma^2}$$

Transition Energy (p=1)

$$\gamma_{tr} = \frac{2I}{\gamma' I_A \varepsilon_n}$$

Matching Conditions with a TW Linac

Emittance Compensation for a SC dominated beam: Controlled Damping of Plasma Oscillations

- \bullet ϵ_n oscillations are driven by Space Charge
- -propagation close to the laminar solution allows control of ϵ_n oscillation "phase"
- ϵ_n sensitive to SC up to the transition energy

References:

- [1] T. Shintake, Proc. of the 22nd Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM (IEEE, New York, 2007), p. 89.
- [2] L. Serafini, J. B. Rosenzweig, PR E55 (1997) 7565
- [3] M. Reiser, "Theory and Design of Charged Particle Beams", Wiley, New York, 1994
- [4] J. B. Rosenzweig, "Fundamentals of beam physics", Oxford University Press, New York, 2003
- [5] T. Wangler, "Principles of RF linear accelerators", Wiley, New York, 1998
- [6] S. Humphries, "Charged particle beams", Wiley, New York, 2002
- [7] F. J. Sacherer, F. J., IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).
- [8] M. Ferrario et al., Int. Journal of Modern Physics A, Vol 22, No. 23, 4214 (2007)
- [9] J. Buon, "Beam phase space and emittance", in CERN 94-01

Emittance and Entropy

$$\rightarrow A = \delta x \delta x'$$

The entropy of the distribution is by definition:

$$S = k \log W$$

$$W = \frac{N!}{n_1! \, n_2! \dots n_M!}$$

is the number of ways $W = \frac{N!}{n_1! n_2! \dots n_M!}$ in which the points can be assigned to the cells to produce the given distribution

For large N, n, Stirling's formula gives: $\log W = N \log N - \sum_{i=1}^{M} n_i \log n_i$.

If A is sufficiently small, the summation may be replaced by an integral to give:

$$S/kN = S_0 = \log N - \frac{1}{N} \int \rho \log A \rho \, dx \, dx'$$

$$\int \rho \, dx \, dx' = N$$

Emittance and Entropy

$$A = \delta x \delta x'$$

The entropy of the distribution is by definition: $S = k \log W$

Consider a distribution in which the density is uniform and bounded by an ellipse of area $\pi\epsilon$ and:

$$\rho = \frac{n}{A} = \frac{N}{\pi \varepsilon} \qquad \int \rho \, dx \, dx' = N$$

$$S/kN = S_0 = \log N - \frac{1}{N} \int \rho \log A \rho \, \mathrm{d}x \, \mathrm{d}x'$$

$$S_o = \log(N) - \log\left(\frac{AN}{\pi\varepsilon}\right) = \log(\pi\varepsilon) - \log(A)$$

Envelope oscillations drive Emittance oscillations

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)} \approx \left| sin\left(\sqrt{2}k_s z\right) \right|$$

energy spread induces decoherence

