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Trace space of an ideal laminar beam
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Trace space of a laminar beam




Trace space of non laminar beam




Geeometric emittance: & o

Ellipse equation:  yx° + 2o0x’ + Bx'° = ¢

Twiss parameters: By -oa’=1 B =-2a

Ellipse area.: A= e,




Fig. 17: Filamentation of mismatched beam in non-linear force



Trace space evolution

No space charge => cross over With space charge => no cross over
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rms emittance
A

rms

Since:

it follows:
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rms beam envelope:
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Define rms emittance:

2
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)
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0, = J(x*) =B,
= J(x%) \/ £
xx'>
It holds also the relation: Yp — a’ =1
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Substituting a, 3,y we get v s _( "
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rms rms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:
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Which distribution has no correlations%
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What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?

2 2 2 2
x4 srms=<x ><x' >—<xx'> o
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Assuming a generic X, X' correlation of the type: X '=Cx"

Whenn=1 ==> ¢__.=0

Whenn#1 ==> ¢_ 40



Constant under linear transformation only

d
d_z(xz)(xlz) — (') = 20y (%) 4+ 2(x) () () — 2(xx”) (xx') = 0
For linear transformations, x” = —k2x, and the right-hand side of the

equation is
2k2(x?) (xx’) — 2(x?) (xx/)k2 = 0,

X
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— (XA (x?) — ()2 =0
dz

And without acceleration: X =—




Normalized rms emittance: &€, .ms

. !/ /
Canonical transverse momentum: P, =P, X = mOC/?)Vx p,=Dp

€, ms = \/aiaix -0,,= mioc (<x2><p§>_<xpx>z)

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(X,Px,¥>Py»Z,P,) remains invariant under conservative forces.

dn

—y
dt

It hold also in the projected phase spaces (x,p,),(y.p,)(;z,p,)
provided that there are no couplings
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Envelope Equation without Acceleration

Now take the derivatives:

d 1 d 1 ' xx'
R A SR

2 2 "
d OX _ d ()'xx/ _ 1 d()'xx, _ O'XX’ _ 1 (<x,2> + <xx,>) _ GXX’ fo + <XX > GXX’
dz? |dz o, o, dz o o

X X X X X

= N

oo (o) e, ()
And simplify: | o] = o o Sy,
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We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.
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Assuming that each particle is subject only to a linear focusing

. . 0
force, without acceleration: x"+k_ x =0

take the average over the entire particle ensemble (xx") = —k; <x2>

2 e

" _ Yrms

o.+k. 0o, = E
o

X

We obtain the rms envelope equation with a linear focusing force
in which the rms emittance enters as defocusing pressure like

term. 2




Beam temperature

Kinetic theory of gases defines temperature (in each direction and global) as

kT, ,=m<v], >, T=4(T,+T,+T,) (Amv? =2kT)

X.y.s

k: Boltzmann constant, m: mass of molecules, vy, s: velocity components of molecules

Definition of beam temperature in analogy:

_ 2
k Tbeam,x,y,s =1, < Vx,y,s =

where vy s are the velocity spreads in the system moving with the beam.

The transverse velocity spread in the beam system is given by the r.m.s emittance:

< Vi >=(Pyc )2 <(x' )2 >=(Byc )2}’x "Exrms similar for y direction

Bc: longitudinal beam velocity B, y : relativistic parameter, 7y,~1/By : Twiss (lattice) parameter

2 2
Hence > k Tbeam’x,y — mOC (ﬂ}/) }/x,y : 8X,y;rﬂls




2 2
— = Tbeam,x,y =1m,C (ﬂ}/) Vxy " 8X,Y;rms

Property Hot beam Cold beam

ion mass (my) heavy ion light ion

ion energy (By) high energy low energy

beam emittance (g) large emittance small emittance

lattice properties (yxy=1/Bxy) strong focus (low B ) high B

PR

hot cold
beam beam

phase space portrait feens e .

U

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving
cold (light) electron beam.
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Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary collisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects

SR éCW @



Continuous Uniform Cylindrical Beam Model

Gauss’ s law

Il
. — E = fi <R
ngE ds fpdV ' ZnSOszr o
E = I 1 for r>R
2me v r p
Bﬁ =_Er
Ampere’ s law ¢
Ir
del=M0deS Bﬁ=M0W for r=R
B,9=M0L for r>R
2xr




Bunched Uniform Cylindrical Beam Model

(T
Ui

v, =

Longitudinal Space Charge field in the bunch moving frame:
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Radial Space Charge field in the bunch moving frame

by series representation of axisymmetric field:
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Lorentz Transformation to the Lab frame

EZ=EZ Z=}’L = f)=§
Er=)/Er S=Ys

E.(0,s)= 5 [\/R2 sy (L=5)? —\|R? 47757 +y(2s—L)]
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It is still a linear field with r but with a longitudinal correlation s



Bunched Uniform Cylindrical Beam Model

Ir
E.(0,5,y)= h(s,y) E,(r,sy)= Tne BB g(s.7)




Lorentz Force

ek,
2

Y

1s a linear function of the transverse coordinate

F = e(Er —ﬁcBﬁ) = e(l—/g’z)Er =

dp, _ o ek, elr

dt Ty _2er280R2ﬁc

g(s.7)

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect.

elx
F = ,
Y 2my’e,0° Bc 8(s7)




Envelope Equation with Space Charsge

Single particle transverse motion:

P._F, p.=p X' = Pym,cx
dt
d d
Il /! — Il ! =F
dt(m) /J’cdz(pX) .
y  F elx
X =— F = S,
pcp ’ Znyzeoai/i'cg( 7)
k (S )/)
" SC >
X = > X
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Now we can calculate the term (xx")that enters in the envelope equation

e, ()
O';' = EW; + x" = ksg X <xx”> = ksg <x2>=ksc
O, O, (O O,

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

" 2 _ n sC
o +ko, = +

” (ﬁy) Oi O,

Emittance Pressure

External Focusing Forces

Laminarity Parameter: o =




The beam undergoes two regimes along the accelerator

KRR

Fig. 11: Particle trajectories in non-zero emittance beam
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Metallic boundary

even mode




Surface charge density Surface electric field
E, = —0/co = —endx/cs

Sx Restoring force

m w pz OX

Plasma oscillations

Ox = (dx)p cos (wy t)




Neutral Plasma

e Oscillations
e Instabilities

« EM Wayve propagation

0
] "..’. o.. o o.::. 0.0..'0
0 0 &g "o @0 °0
° 8 :." Io 0.'0 Ol
o..o CYN 5: .o.o. 0 X

O
.. o .~...: ... ..
b
¢y

Single Component
Cold Relativistic Plasma




koo (5,7) Single Component
o' +k’o =17 e i
s o Relativistic Plasma

Equilibrium solution:

Small perturbation:

o(8)=0,,(s)+d0(s)

80"(s)+ 2k d0(s) =0

(5(7( ) = (SGO(S) COS(’\/EICSZ)

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

0(s) = 0., (5)+ 60, (s) cos(V2kz)



Continuous solenoid channel

eq Slice equilibrium orbit

Perturbed trajectories oscillate around the equilibrium with the same frequency
but with different amplitudes:

a,,(s)+do, (S)COS(\/EICSZ)
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Projected emittance
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Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam

Px
A

X Slice Phase

Projected Phase Space
Spaces
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Perturbed trajectories oscillate around the
equilibrium with the

but with
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Elliptical cross section bunch

E - —! Y
y
Beme, Y(X+7Y)
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High Brightness Photo-Injector




Envelope Equation with Longitudinal Acceleration

pO = )/OmO/))OC d d d
P / /
X _ _ o =0 '
Pe=sPo 0 T 4 \Px) = e g (px) o__(BY)
pP=p,+pP< , B
, Y+Px =0 br
p'=(By) m,c P
" /3)/ | ' /5)’ | " _ grzms <X.X”> de - = Oxx'
Space Charge De-focusing Force
’ 2
Oj:+(ﬁy) o +k’o_ = 8”2 3+k“
Pr. (/M? o, O,
Adiabatic Damping / Emittance Pressure

Other External Focusing Forces g, = PYE, .




Beam subject to strong acceleration

0
<
|

/ k2 2 0
£ k
O’Z+LO';+L2FO’X =1+
Y Y Yy O, YO,
y/2
We must include also the RF focusing force: kr = ;
o 21
ksc = —g(s, }/)



Looking for an “equilibrium” solution [UMEKNE
==> all terms must have the same dependence on y




Looking for an “equilibrium” solution [UMEKNE
==> all terms must have the same dependence on y

: 1 O
Laminar beam [y Qe a—
-

Thermal beam




Space charge dominated beam (Laminar)




This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process




An important property of the laminar beam

1 |21
Oy = 1/
Y N 1aY

Constant phase space angle: (R




E,..=25MV/m

I=4 kA




Matching Conditions with a TW Linac
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Emittance Compensation for a SC dominated beam:
Controlled Damping of Plasma Oscillations

* ¢, oscillations are driven by Space Charge

-propagation close to the laminar solution allows control of
g, oscillation “phase”

*c, sensitive fo SC up to the transition energy
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Emittance and Entropy

1,000 g ;
e L
—Ns 4 = 5x5x'
1.500 The entropy of the  distribution is by
definition:
o S=klogW
1s the number of ways
We N! in which the points
-1.508 nyln,!...ny!  can be assigned to the
NI : T cells to produce the
| e o T s L given distribution
-3.00%190 =050 3. 050 .100

M
For large N, n, Stirling's formula gives: log W= N log N — ) n; log n;.
i=1

If A is sufficiently small, the summation may be replaced by an integral to give:
1
S/kN=So=1OgN—erplogApdxdx' p=nlA
f podxdx'=N



Emittance and Entropy

3.000 g

s 4 = 0x0x’

1.500 The entropy of the  distribution is by

definition:
o S=klogW

Consider a distribution in which the density

A % is uniform and bounded by an ellipse of area
me and:

-3.08%; = 100 =—=— fdedX’=N

A 7e

1
S/kN=S,=1log N — —A—,JplogApdxdx’

s, =log(N)- 1og(%) - log(7e) ~ 1%@)
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Envelope oscillations drive Emittance oscillations

O(Z) oo

€(2) .

JGG ~0? = ({7 )= ()7 =

Sin(\/zksz)




energy spread induces decoherence
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